메뉴 건너뛰기




Volumn 161, Issue 1-4, 2010, Pages 315-326

Artificial neural network analysis for reliability prediction of regional runoff utilization

Author keywords

Back propagation neural network; Radial basis function neural network; Rainwater; Regional runoff utilization

Indexed keywords

ARTIFICIAL NEURAL NETWORK ANALYSIS; ARTIFICIAL NEURAL NETWORK MODELS; BACK PROPAGATION NEURAL NETWORKS; BASIC FUNCTIONS; DAILY RAINFALL; DEMAND AND SUPPLY; ERROR RATE; FUTURE APPLICATIONS; GAUSSIAN FUNCTIONS; INSTANTANEOUS CONTROL; LEARNING SPEED; OUTPUT DATA; PREDICTION MODEL; RADIAL BASIS FUNCTION NEURAL NETWORK; RADIAL BASIS FUNCTION NEURAL NETWORKS; RAINFALL RUNOFF; RELIABILITY PREDICTION; SMALL AREA; STORAGE CAPACITY; SUPPLY SYSTEM; TANK CAPACITY;

EID: 74349116033     PISSN: 01676369     EISSN: 15732959     Source Type: Journal    
DOI: 10.1007/s10661-009-0748-5     Document Type: Article
Times cited : (10)

References (23)
  • 1
    • 0000032342 scopus 로고    scopus 로고
    • How effective are neural networks at forecasting and prediction? A review and evaluation
    • 10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.0.CO;2-Q doi:10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.0.CO;2-Q
    • M. Adya F. Collopy 1998 How effective are neural networks at forecasting and prediction? A review and evaluation Journal of Forecasting 17 5-6 481 495 10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.0.CO;2-Q doi:10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.0.CO;2-Q
    • (1998) Journal of Forecasting , vol.17 , Issue.56 , pp. 481-495
    • Adya, M.1    Collopy, F.2
  • 2
    • 0026116468 scopus 로고
    • Orthogonal least squares algorithm for radial basis function networks
    • 10.1109/72.80341 1:STN:280:DC%2BD1c7hslOrtw%3D%3D doi:10.1109/72.80341
    • S. Chen C. F. N. Cowan P. M. Grant 1991 Orthogonal least squares algorithm for radial basis function networks IEEE Transactions on Neural Networks 2 2 302 309 10.1109/72.80341 1:STN:280:DC%2BD1c7hslOrtw%3D%3D doi:10.1109/72.80341
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 3
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • C. W. Dawson R. L. Wilby 2001 Hydrological modelling using artificial neural networks Progress in Physical Geography 25 1 80 108
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 4
    • 0034306554 scopus 로고    scopus 로고
    • Performance evaluation of artificial neural networks for runoff prediction
    • DOI 10.1061/(ASCE)1084-0699(2000)5:4(424)
    • A. Elshorbagy S. P. Simonovic U. S. Panu 2000 Performance evaluation of artificial neural networks for runoff prediction Journal of Hydrologic Engineering 5 4 424 427 10.1061/(ASCE)1084-0699(2000)5:4(424) doi:10.1061/(ASCE)1084-0699(2000)5:4(424) (Pubitemid 30798428)
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.4 , pp. 424-427
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • DOI 10.1061/(ASCE)1084-0699(2000)5:2(124)
    • R. S. Govindaraju 2000 Artificial neural networks in hydrology II: Hydrologic applications Journal of Hydrologic Engineering 5 2 124 137 10.1061/(ASCE)1084-0699(2000)5:2(124) doi:10.1061/(ASCE)1084-0699(2000)5:2(124) (Pubitemid 30458084)
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 124-137
    • Govindaraju, R.S.1
  • 6
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • DOI 10.1061/(ASCE)1084-0699(2000)5:2(115)
    • R. S. Govindaraju 2000 Artificial neural networks in hydrology I: Preliminary concepts Journal of Hydrologic Engineering 5 2 115 123 10.1061/(ASCE)1084-0699(2000)5:2(115) doi:10.1061/(ASCE)1084-0699(2000)5:2(115) (Pubitemid 30458083)
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 115-123
    • Govindaraju, R.S.1
  • 9
    • 0023515080 scopus 로고
    • Counterpropagation network
    • 10.1364/AO.26.004979
    • R. Hecht-Nielsen 1987 Counterpropagation network Applied Optics 26 4979 4984 10.1364/AO.26.004979
    • (1987) Applied Optics , vol.26 , pp. 4979-4984
    • Hecht-Nielsen, R.1
  • 10
    • 0023834037 scopus 로고
    • Applications of counter propagation network
    • 10.1016/0893-6080(88)90015-9 doi:10.1016/0893-6080(88)90015-9
    • R. Hecht-Nielsen 1990 Applications of counter propagation network Neural Networks 1 131 139 10.1016/0893-6080(88)90015-9 doi:10.1016/0893-6080(88)90015-9
    • (1990) Neural Networks , vol.1 , pp. 131-139
    • Hecht-Nielsen, R.1
  • 11
    • 0034174352 scopus 로고    scopus 로고
    • Artificial neural networks in remote sensing of hydrologic processes
    • DOI 10.1061/(ASCE)1084-0699(2000)5:2(138)
    • S. Islam R. Kothari 2000 Artificial neural networks in remote sensing of hydrologic processes Journal of Hydrologic Engineering 5 2 138 144 10.1061/(ASCE)1084-0699(2000)5:2(138) doi:10.1061/(ASCE)1084-0699(2000)5:2(138) (Pubitemid 30458085)
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 138-144
    • Islam, S.1    Kothari, R.2
  • 12
    • 0032030147 scopus 로고    scopus 로고
    • Use of radial basis function type artificial neural networks for runoff simulation
    • 10.1111/0885-9507.00089 doi:10.1111/0885-9507.00089
    • A. W. Jayawardena D. Achela K. Fernando 2002 Use of radial basis function type artificial neural networks for runoff simulation Computer-Aided Civil and Infrastructure Engineering 13 2 91 99 10.1111/0885-9507.00089 doi:10.1111/0885-9507.00089
    • (2002) Computer-Aided Civil and Infrastructure Engineering , vol.13 , Issue.2 , pp. 91-99
    • Jayawardena, A.W.1    Achela, D.2    Fernando, K.3
  • 13
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction
    • DOI 10.1002/hyp.5983
    • D. I. Jeong Y. O. Kim 2005 Rainfall-runoff models using artificial neural networks for ensemble streamflow predicting Hydrological Processes 19 19 3819 3835 10.1002/hyp.5983 doi:10.1002/hyp.5983 (Pubitemid 43072808)
    • (2005) Hydrological Processes , vol.19 , Issue.19 , pp. 3819-3835
    • Jeong, D.-I.1    Kim, Y.-O.2
  • 18
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • 10.1109/MASSP.1987.1165576 doi:10.1109/MASSP.1987.1165576
    • R. P. Lippmann 1987 An introduction to computing with neural nets IEEE ASSP Magazine 4 2 4 22 10.1109/MASSP.1987.1165576 doi:10.1109/MASSP.1987.1165576
    • (1987) IEEE ASSP Magazine , vol.4 , Issue.2 , pp. 4-22
    • Lippmann, R.P.1
  • 19
    • 84941531665 scopus 로고
    • On hidden nodes for neural nets
    • 10.1109/31.31313 doi:10.1109/31.31313
    • G. Mirchandani W. Cao 1989 On hidden nodes for neural nets IEEE Transactions on Circuits and Systems 36 5 661 664 10.1109/31.31313 doi:10.1109/31.31313
    • (1989) IEEE Transactions on Circuits and Systems , vol.36 , Issue.5 , pp. 661-664
    • Mirchandani, G.1    Cao, W.2
  • 22
    • 0034235538 scopus 로고    scopus 로고
    • Classification of river basins using artificial neural network
    • DOI 10.1061/(ASCE)1084-0699(2000)5:3(290)
    • B. S. Thandaveswara N. Sajikumar 2000 Classification of river basins using artificial neural network Journal of Hydrologic Engineering 5 3 290 298 10.1061/(ASCE)1084-0699(2000)5:3(290) doi:10.1061/(ASCE)1084-0699(2000)5:3(290) (Pubitemid 30454265)
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.3 , pp. 290-298
    • Thandaveswara, B.S.1    Sajikumar, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.