메뉴 건너뛰기




Volumn 109, Issue , 2008, Pages 139-153

An incremental learning structure using granular computing and model fusion with application to materials processing

Author keywords

[No Author keywords available]

Indexed keywords


EID: 51349137176     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-77623-9_8     Document Type: Article
Times cited : (14)

References (12)
  • 2
    • 0026923589 scopus 로고
    • Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multi-dimensional maps
    • G Carpenter et al. (1991) Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multi-dimensional maps. IEEE Transactions on Neural Networks, 3, 698-713
    • (1991) IEEE Transactions on Neural Networks , vol.3 , pp. 698-713
    • Carpenter, G.1
  • 4
    • 0029733589 scopus 로고    scopus 로고
    • Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique. ICDE
    • IEEE Computer Society, Washington DC, USA
    • WD Cheung, J Han et al. (1996) Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique. ICDE, 12th Int. Conf. on Data Engineering, IEEE Computer Society, Washington DC, USA
    • (1996) 12th Int. Conf. on Data Engineering
    • Cheung, W.D.1    Han, J.2
  • 5
    • 0002913538 scopus 로고    scopus 로고
    • ECOS: A framework for evolving connectionist systems and the ECO learning paradigm
    • Kitakyushu, Japan: IOS, pp
    • N Kasabov (1998) ECOS: A framework for evolving connectionist systems and the ECO learning paradigm. Proceedings of the International Conference on Neural Information Processing, Kitakyushu, Japan: IOS, pp. 1222-1235
    • (1998) Proceedings of the International Conference on Neural Information Processing , pp. 1222-1235
    • Kasabov, N.1
  • 6
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/ unsupervised online knowledge-based learning
    • N Kasabov (2001) Evolving fuzzy neural networks for supervised/ unsupervised online knowledge-based learning. IEEE Transactions on Systems Man and Cybernetics, B 31, 902-918
    • (2001) IEEE Transactions on Systems Man and Cybernetics, B , vol.31 , pp. 902-918
    • Kasabov, N.1
  • 7
    • 0031260442 scopus 로고    scopus 로고
    • Recognition of patient anaesthetic levels: Neural network systems, principal components analysis, and canonical discriminant variates
    • DA Linkens and L Vefghi (1997) Recognition of patient anaesthetic levels: Neural network systems, principal components analysis, and canonical discriminant variates. Artificial Intelligence in Medicine 11(2), 155-173
    • (1997) Artificial Intelligence in Medicine , vol.11 , Issue.2 , pp. 155-173
    • Linkens, D.A.1    Vefghi, L.2
  • 9
    • 79960746038 scopus 로고    scopus 로고
    • Granular computing and evolutionary fuzzy modelling for mechanical properties of alloy steels. IFAC 2005
    • July 4-8, Prague, Czech Republic
    • G Panoutsos and M Mahfouf (2005) Granular computing and evolutionary fuzzy modelling for mechanical properties of alloy steels. IFAC 2005, Proceedings of, 16th IFAC World Congress, July 4-8 2005, Prague, Czech Republic
    • (2005) Proceedings of, 16th IFAC World Congress
    • Panoutsos, G.1    Mahfouf, M.2
  • 10
    • 57649157443 scopus 로고    scopus 로고
    • Discovering knowledge and modelling systems using granular computing and neurofuzzy Structures. NiSIS'05
    • Nature Inspired Smart Information Systems, Algarve, Portugal, 3-5 Oct
    • G Panoutsos and M Mahfouf (2005) Discovering knowledge and modelling systems using granular computing and neurofuzzy Structures. NiSIS'05, 1st Symposium, Nature Inspired Smart Information Systems, Algarve, Portugal, 3-5 Oct. 2005
    • (2005) 1st Symposium
    • Panoutsos, G.1    Mahfouf, M.2
  • 11
    • 4243280924 scopus 로고    scopus 로고
    • Ph.D. Thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, UK
    • J Tenner (1999) Optimisation of the heat treatment of steel using neural networks Ph.D. Thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, UK
    • (1999) Optimisation of the heat treatment of steel using neural networks
    • Tenner, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.