메뉴 건너뛰기




Volumn 1, Issue 1, 2007, Pages 37-52

Evaluating learning algorithms and classifiers

Author keywords

classification; evaluation; supervised learning

Indexed keywords


EID: 73649111816     PISSN: 17515858     EISSN: 17515866     Source Type: Journal    
DOI: 10.1504/IJIIDS.2007.013284     Document Type: Article
Times cited : (19)

References (52)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Petrov, B.N. and Csáki, F. (Eds.) Akadémia Kiadó, Budapest
    • Akaike, H. (1973) ‘Information theory and an extension of the maximum likelihood principle’, in Petrov, B.N. and Csáki, F. (Eds.): 2nd International Symposium on Information Theory, Akadémia Kiadó, Budapest, pp.267–281.
    • (1973) 2nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 0033220735 scopus 로고    scopus 로고
    • Measure-based classifier performance evaluation
    • Andersson, A., Davidsson, P. and Lindén, J. (1999) ‘Measure-based classifier performance evaluation’, Pattern Recognition Letters, Vol. 20, No. 11–13, pp.1165–1173.
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1165-1173
    • Andersson, A.1    Davidsson, P.2    Lindén, J.3
  • 5
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C. (1998) ‘A tutorial on support vector machines for pattern recognition’, Data Mining and Knowledge Discovery, Vol. 2, No. 2, pp.121–167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical test for comparing supervised classification learning algorithms
    • Dietterich, T.G. (1998) ‘Approximate statistical test for comparing supervised classification learning algorithms’, Neural Computation, Vol. 10, No. 7, pp.1895–1923.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 8
    • 22844456607 scopus 로고    scopus 로고
    • The role of Occam’s razor in knowledge discovery
    • Domingos, P. (1999) ‘The role of Occam’s razor in knowledge discovery’, Data Mining and Knowledge Discovery, Vol. 3, No. 4, pp.409–425.
    • (1999) Data Mining and Knowledge Discovery , vol.3 , Issue.4 , pp. 409-425
    • Domingos, P.1
  • 10
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: improvement on cross-validation
    • Efron, B. (1983) ‘Estimating the error rate of a prediction rule: improvement on cross-validation’, American Statistical Association, Vol. 78, No. 382, pp.316–330.
    • (1983) American Statistical Association , vol.78 , Issue.382 , pp. 316-330
    • Efron, B.1
  • 12
    • 34948820133 scopus 로고
    • Signal detection theory and ROC analysis
    • Academic Press, London
    • Egan, J.P. (1975) ‘Signal detection theory and ROC analysis’, Cognition and Perception, Academic Press, London.
    • (1975) Cognition and Perception
    • Egan, J.P.1
  • 14
    • 1642379397 scopus 로고    scopus 로고
    • Introduction to the special issue on meta-learning
    • Giraud-Carrier, C., Vilalta, R. and Brazdil, P. (2004) ‘Introduction to the special issue on meta-learning’, Machine Learning, Vol. 54, No. 3, pp.187–193.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 187-193
    • Giraud-Carrier, C.1    Vilalta, R.2    Brazdil, P.3
  • 15
    • 12444258560 scopus 로고
    • Evaluation and selection of biases in machine learning
    • Gordon, D.F. and Desjardins, M. (1995) ‘Evaluation and selection of biases in machine learning’, Machine Learning, Vol. 20, pp.5–22.
    • (1995) Machine Learning , vol.20 , pp. 5-22
    • Gordon, D.F.1    Desjardins, M.2
  • 16
    • 33645034499 scopus 로고    scopus 로고
    • Minimum description length tutorial
    • Grünwald, P.I., Myung, J. and Pitt, M. (Eds.) MIT Press, Cambridge, Massachusetts, USA
    • Grünwald, P. (2005) ‘Minimum description length tutorial’, in Grünwald, P.I., Myung, J. and Pitt, M. (Eds.): Advances in Minimum Description Length – Theory and Applications, MIT Press, Cambridge, Massachusetts, USA, pp.23–81.
    • (2005) Advances in Minimum Description Length – Theory and Applications , pp. 23-81
    • Grünwald, P.1
  • 17
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • Hand, D.J. and Till, R.J. (2001) ‘A simple generalisation of the area under the ROC curve for multiple class classification problems’, Machine Learning, Vol. 45, pp.171–186.
    • (2001) Machine Learning , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 19
    • 0029306995 scopus 로고
    • STATLOG: comparison of classification algorithms on large real-world problems
    • King, R.D., Feng, C. and Sutherland, A. (1995) ‘STATLOG: comparison of classification algorithms on large real-world problems’, Applied Artificial Intelligence, Vol. 9, No. 3, pp.259–287.
    • (1995) Applied Artificial Intelligence , vol.9 , Issue.3 , pp. 259-287
    • King, R.D.1    Feng, C.2    Sutherland, A.3
  • 20
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Kaufmann, M. (Ed.): Montréal, Québec, Canada
    • Kohavi, R. (1995) ‘A study of cross-validation and bootstrap for accuracy estimation and model selection’, in Kaufmann, M. (Ed.): 14th International Joint Conference on Artificial Intelligence, Montréal, Québec, Canada, pp.1137–1145.
    • (1995) 14th International Joint Conference on Artificial Intelligence , pp. 1137-1145
    • Kohavi, R.1
  • 21
    • 0001902056 scopus 로고
    • Three approaches to the quantitative definition of information
    • Kolmogorov, A.N. (1965) ‘Three approaches to the quantitative definition of information’, Problems in Information Transmission, Vol. 1, No. 1, pp.1–7.
    • (1965) Problems in Information Transmission , vol.1 , Issue.1 , pp. 1-7
    • Kolmogorov, A.N.1
  • 22
    • 33750727688 scopus 로고    scopus 로고
    • Quantifying the impact of learning algorithm parameter tuning
    • AAAI Press, Boston, Massachusetts, USA
    • Lavesson, N. and Davidsson, P. (2006) ‘Quantifying the impact of learning algorithm parameter tuning’, National Conference on Artificial Intelligence, AAAI Press, Boston, Massachusetts, USA, pp.395–400.
    • (2006) National Conference on Artificial Intelligence , pp. 395-400
    • Lavesson, N.1    Davidsson, P.2
  • 23
    • 0003682772 scopus 로고
    • Technical Report CBM-TR-117, Rutgers University, New Brunswick, New Jersey, USA
    • Mitchell, T.M. (1980) The Need for Biases in Learning Generalizations, Technical Report CBM-TR-117, Rutgers University, New Brunswick, New Jersey, USA.
    • (1980) The Need for Biases in Learning Generalizations
    • Mitchell, T.M.1
  • 24
    • 0004255908 scopus 로고    scopus 로고
    • Machine learning
    • McGraw-Hill, Singapore, international edition
    • Mitchell, T.M. (1997) ‘Machine learning’, Computer Science Series, McGraw-Hill, Singapore, international edition.
    • (1997) Computer Science Series
    • Mitchell, T.M.1
  • 25
    • 0028544395 scopus 로고
    • Network information criterion – determining the number of hidden units for an artificial neural network model
    • Murata, N., Yoshizawa, S. and Amari, S-I. (1994) ‘Network information criterion – determining the number of hidden units for an artificial neural network model’, IEEE Transactions on Neural Networks, Vol. 5, No. 6, pp.865–872.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.-I.3
  • 27
    • 0343838566 scopus 로고    scopus 로고
    • Development of multi-criteria metrics for evaluation of data mining algorithms
    • Newport Beach, AAAI Press, Menlo Park, California, USA
    • Nakhaeizadeh, G. and Schnabl, A. (1997) ‘Development of multi-criteria metrics for evaluation of data mining algorithms’, 3rd International Conference on Knowledge Discovery and Data Mining, Newport Beach, AAAI Press, Menlo Park, California, USA, pp.37–42.
    • (1997) 3rd International Conference on Knowledge Discovery and Data Mining , pp. 37-42
    • Nakhaeizadeh, G.1    Schnabl, A.2
  • 28
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions
    • Huntington Beach, AAAI Press, Menlo Park, California, USA
    • Provost, F. and Fawcett, T. (1997) ‘Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions’, 3rd International Conference on Knowledge Discovery and Data Mining, Huntington Beach, AAAI Press, Menlo Park, California, USA.
    • (1997) 3rd International Conference on Knowledge Discovery and Data Mining
    • Provost, F.1    Fawcett, T.2
  • 29
    • 0002900357 scopus 로고    scopus 로고
    • The case against accuracy estimation for comparing induction algorithms
    • Kaufmann, M. (Ed.): Madison, WI, USA
    • Provost, F., Fawcett, T. and Kohavi, R. (1998) ‘The case against accuracy estimation for comparing induction algorithms’, in Kaufmann, M. (Ed.): 15th International Conference on Machine Learning, Madison, WI, USA, pp.445–453.
    • (1998) 15th International Conference on Machine Learning , pp. 445-453
    • Provost, F.1    Fawcett, T.2    Kohavi, R.3
  • 30
    • 0001610304 scopus 로고
    • Notes on bias in estimation
    • Quenouille, M.H. (1956) ‘Notes on bias in estimation’, Biometrika, Vol. 61, No.353–360.
    • (1956) Biometrika , vol.61 , Issue.353–360
    • Quenouille, M.H.1
  • 31
    • 84936421967 scopus 로고
    • Choosing models for cross-classifications
    • Raftery, A.E. (1986) ‘Choosing models for cross-classifications’, American Sociological Review, Vol. 51, pp.145–146.
    • (1986) American Sociological Review , vol.51 , pp. 145-146
    • Raftery, A.E.1
  • 32
    • 0030383583 scopus 로고    scopus 로고
    • Towards robust model selection using estimation and approximation error bounds
    • ACM Press, New York City, New York, USA
    • Ratsaby, J., Meir, R. and Maiorov, V. (1996) ‘Towards robust model selection using estimation and approximation error bounds’, 9th Annual Conference on Computational Learning Theory, ACM Press, New York City, New York, USA, pp.57–67.
    • (1996) 9th Annual Conference on Computational Learning Theory , pp. 57-67
    • Ratsaby, J.1    Meir, R.2    Maiorov, V.3
  • 33
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen, J. (1978) ‘Modeling by shortest data description’, Automatica, Vol. 14, pp.465–471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 34
    • 0003584577 scopus 로고    scopus 로고
    • Artificial intelligence: a modern approach
    • 2nd ed., Prentice-Hall, Upper Saddle River, New Jersey, USA
    • Russell, S. and Norvig, P. (2003) ‘Artificial intelligence: a modern approach’, Prentice Hall Series in Artificial Intelligence, 2nd ed., Prentice-Hall, Upper Saddle River, New Jersey, USA.
    • (2003) Prentice Hall Series in Artificial Intelligence
    • Russell, S.1    Norvig, P.2
  • 35
    • 0002534234 scopus 로고    scopus 로고
    • On comparing classifiers: a critique of current research and methods
    • Salzberg, S.L. (1999) ‘On comparing classifiers: a critique of current research and methods’, Data Mining and Knowledge Discovery, Vol. 1, pp.1–12.
    • (1999) Data Mining and Knowledge Discovery , vol.1 , pp. 1-12
    • Salzberg, S.L.1
  • 36
    • 33745789043 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • Sathiya Keerthi, S., Chapelle, O. and DeCoste, D. (2006) ‘Building support vector machines with reduced classifier complexity’, Machine Learning Research, Vol. 7, pp.1493–1515.
    • (2006) Machine Learning Research , vol.7 , pp. 1493-1515
    • Sathiya Keerthi, S.1    Chapelle, O.2    DeCoste, D.3
  • 37
    • 0001259758 scopus 로고
    • Overfitting avoidance as bias
    • Schaffer, C. (1993) ‘Overfitting avoidance as bias’, Machine Learning, Vol. 10, No. 2, pp.153–178.
    • (1993) Machine Learning , vol.10 , Issue.2 , pp. 153-178
    • Schaffer, C.1
  • 38
    • 84983750945 scopus 로고
    • A conservation law for generalization performance
    • Morgan Kaufmann, New Brunswick, New Jersey, USA
    • Schaffer, C. (1994) ‘A conservation law for generalization performance’, 11th International Conference on Machine Learning, Morgan Kaufmann, New Brunswick, New Jersey, USA, pp.259–265.
    • (1994) 11th International Conference on Machine Learning , pp. 259-265
    • Schaffer, C.1
  • 39
    • 0031370398 scopus 로고    scopus 로고
    • A new metric-based approach to model selection
    • AAAI Press, Providence, Rhode Island, USA
    • Schuurmans, D. (1997) ‘A new metric-based approach to model selection’, 14th National Conference on Artificial Intelligence, AAAI Press, Providence, Rhode Island, USA, pp.552–558.
    • (1997) 14th National Conference on Artificial Intelligence , pp. 552-558
    • Schuurmans, D.1
  • 40
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwartz, G. (1978) ‘Estimating the dimension of a model’, Annals of Statistics, Vol. 6, No. 2, pp.461–464.
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwartz, G.1
  • 41
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. (1974) ‘Cross-validatory choice and assessment of statistical predictions’, Royal Statistical Society, Vol. 36, pp.111–147.
    • (1974) Royal Statistical Society , vol.36 , pp. 111-147
    • Stone, M.1
  • 42
    • 0035434818 scopus 로고    scopus 로고
    • Subspace information criterion for model selection
    • Sugiyama, M. and Ogawa, H. (2001) ‘Subspace information criterion for model selection’, Neural Computation, Vol. 13, No. 8, pp.1863–1890.
    • (2001) Neural Computation , vol.13 , Issue.8 , pp. 1863-1890
    • Sugiyama, M.1    Ogawa, H.2
  • 43
    • 0003840144 scopus 로고
    • Open Court Publishing Company, La Salle, Illinois, USA
    • Tornay, S.C. (1938) Ockham: Studies and Selections, Open Court Publishing Company, La Salle, Illinois, USA.
    • (1938) Ockham: Studies and Selections
    • Tornay, S.C.1
  • 45
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik, V. and Chervonenkis, A. (1971) ‘On the uniform convergence of relative frequencies of events to their probabilities’, Theory of Probability and its Applications, Vol. 16, pp.264–280.
    • (1971) Theory of Probability and its Applications , vol.16 , pp. 264-280
    • Vapnik, V.1    Chervonenkis, A.2
  • 46
    • 0036791948 scopus 로고    scopus 로고
    • Perspective view and survey of meta learning
    • Vilalta, R. and Drissi, Y. (2002) ‘Perspective view and survey of meta learning’, Artificial Intelligence Review, Vol. 18, No. 2, pp.77–95.
    • (2002) Artificial Intelligence Review , vol.18 , Issue.2 , pp. 77-95
    • Vilalta, R.1    Drissi, Y.2
  • 49
    • 33847181085 scopus 로고    scopus 로고
    • Technical Report, NASA Ames Research Center, Moffett Field, California, USA
    • Wolpert, D.H. (2001) The Supervised Learning no free Lunch Theorems, Technical Report, NASA Ames Research Center, Moffett Field, California, USA.
    • (2001) The Supervised Learning no free Lunch Theorems
    • Wolpert, D.H.1
  • 50
    • 84952963416 scopus 로고    scopus 로고
    • We assume that each V is a finite set but the framework as such is not limited in theory to this assumption
    • We assume that each V is a finite set but the framework as such is not limited in theory to this assumption.
  • 51
    • 84952969177 scopus 로고    scopus 로고
    • This process is sometimes called model selection. The term, originating from statistics, is frequently but also ambiguously used in the machine learning community. Consequently, it is often followed by some definition, e.g., “the objective is to select a good classifier from a set of classifiers” (Kohavi, 1995), “a mechanism for […] selecting a hypothesis among a set of candidate hypotheses based on some pre-specified quality measure” (Ratsaby et al., 1996)
    • This process is sometimes called model selection. The term, originating from statistics, is frequently but also ambiguously used in the machine learning community. Consequently, it is often followed by some definition, e.g., “the objective is to select a good classifier from a set of classifiers” (Kohavi, 1995), “a mechanism for […] selecting a hypothesis among a set of candidate hypotheses based on some pre-specified quality measure” (Ratsaby et al., 1996).
  • 52
    • 84952956089 scopus 로고    scopus 로고
    • In terms of our framework, an overfitted classifier scores a very high accuracy on Ts but it has an unacceptably low accuracy when classifying other instances. The goal is to find a classifier with an acceptable accuracy for typical instances of the problem domain
    • In terms of our framework, an overfitted classifier scores a very high accuracy on Ts but it has an unacceptably low accuracy when classifying other instances. The goal is to find a classifier with an acceptable accuracy for typical instances of the problem domain.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.