메뉴 건너뛰기




Volumn 97, Issue 1, 2010, Pages 19-27

Modelling and estimating heterogeneous variances in threshold models for ordinal discrete data via Winbugs/Openbugs

Author keywords

GLMM; Heteroscedasticity; Mixed models; Openbugs; Ordered categorical data; Winbugs

Indexed keywords

CLINICAL TRIAL; DISCRETE DATA; GIBBS SAMPLING; HETEROSCEDASTICITY; LINEAR MIXED MODELS; MIXED MODELS; MODEL COMPARISON; ORDERED CATEGORICAL DATA; P-VALUES; PREDICTIVE ABILITIES; STANDARD DEVIATION; THRESHOLD MODEL; VARIANCE MODELS;

EID: 73649102070     PISSN: 01692607     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cmpb.2009.05.004     Document Type: Article
Times cited : (8)

References (30)
  • 1
    • 0001306637 scopus 로고
    • Regression models for ordinal data
    • McCullagh P. Regression models for ordinal data. J. R. Stat. Soc. B 42 (1980) 109-142
    • (1980) J. R. Stat. Soc. B , vol.42 , pp. 109-142
    • McCullagh, P.1
  • 2
    • 0033619117 scopus 로고    scopus 로고
    • Modelling ordered categorical data: recent advances and future challenges
    • Agresti A. Modelling ordered categorical data: recent advances and future challenges. Stat. Med. 18 (1999) 2191-2207
    • (1999) Stat. Med. , vol.18 , pp. 2191-2207
    • Agresti, A.1
  • 3
    • 22544479106 scopus 로고    scopus 로고
    • The analysis of ordered categorical data: an overview and a survey of recent developments
    • Liu Y., and Agresti A. The analysis of ordered categorical data: an overview and a survey of recent developments. Test 14 (2005) 1-73
    • (2005) Test , vol.14 , pp. 1-73
    • Liu, Y.1    Agresti, A.2
  • 5
    • 0001214314 scopus 로고
    • The results of crosses between inbred strains of guinea pigs differing in number of digits
    • Wright S. The results of crosses between inbred strains of guinea pigs differing in number of digits. Genetics 19 (1934) 537-551
    • (1934) Genetics , vol.19 , pp. 537-551
    • Wright, S.1
  • 6
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Smyth G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3 (2004) 1-25
    • (2004) Stat. Appl. Genet. Mol. Biol. , vol.3 , pp. 1-25
    • Smyth, G.K.1
  • 7
    • 34249694893 scopus 로고    scopus 로고
    • A structural mixed model for variances in differential gene expression studies
    • Jaffrézic F., Marot G., Degrelle S., Hue I., and Foulley J.-L. A structural mixed model for variances in differential gene expression studies. Genet. Res. 89 (2007) 19-25
    • (2007) Genet. Res. , vol.89 , pp. 19-25
    • Jaffrézic, F.1    Marot, G.2    Degrelle, S.3    Hue, I.4    Foulley, J.-L.5
  • 8
    • 0010304045 scopus 로고
    • Marginal likelihood and Bayesian approaches to the analysis of heterogeneous residual variances in mixed linear Gaussian models
    • Foulley J.-L., San Cristobal M., Gianola D., and Im S. Marginal likelihood and Bayesian approaches to the analysis of heterogeneous residual variances in mixed linear Gaussian models. Comput. Stat. Data Anal. 13 (1992) 29-305
    • (1992) Comput. Stat. Data Anal. , vol.13 , pp. 29-305
    • Foulley, J.-L.1    San Cristobal, M.2    Gianola, D.3    Im, S.4
  • 9
    • 0004714611 scopus 로고    scopus 로고
    • Statistical analysis of ordered categorical data via a structural heteroskedastic threshold model
    • Foulley J.-L., and Gianola D. Statistical analysis of ordered categorical data via a structural heteroskedastic threshold model. Genet. Sel. Evol. 28 (1996) 249-273
    • (1996) Genet. Sel. Evol. , vol.28 , pp. 249-273
    • Foulley, J.-L.1    Gianola, D.2
  • 10
    • 0343527224 scopus 로고    scopus 로고
    • A quasi-score approach to the analysis of ordered categorical data via a mixed heteroskedastic threshold model
    • Jaffrézic F., Robert-Granié C., and Foulley J.-L. A quasi-score approach to the analysis of ordered categorical data via a mixed heteroskedastic threshold model. Genet. Sel. Evol. 31 (1999) 301-318
    • (1999) Genet. Sel. Evol. , vol.31 , pp. 301-318
    • Jaffrézic, F.1    Robert-Granié, C.2    Foulley, J.-L.3
  • 11
    • 18544382833 scopus 로고    scopus 로고
    • Generalized additive models for location, scale and shape (with discussion)
    • Rigby R.A., and Stasinopoulos D.M. Generalized additive models for location, scale and shape (with discussion). Appl. Stat. 54 (2005) 507-554
    • (2005) Appl. Stat. , vol.54 , pp. 507-554
    • Rigby, R.A.1    Stasinopoulos, D.M.2
  • 12
    • 27644455818 scopus 로고    scopus 로고
    • Quasi-likelihood estimation for GLM with random scales
    • Lu J.C., Chen D., and Zhou W. Quasi-likelihood estimation for GLM with random scales. J. Stat. Plann. Infer. 136 (2006) 401-429
    • (2006) J. Stat. Plann. Infer. , vol.136 , pp. 401-429
    • Lu, J.C.1    Chen, D.2    Zhou, W.3
  • 13
    • 33644629431 scopus 로고    scopus 로고
    • Double hierarchical generalized linear models
    • Lee Y., and Nelder J.A. Double hierarchical generalized linear models. Appl. Stat. 55 (2006) 139-185
    • (2006) Appl. Stat. , vol.55 , pp. 139-185
    • Lee, Y.1    Nelder, J.A.2
  • 14
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility
    • Lunn D.J., Thomas A., Best N., and Spiegelhalter D. WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Stat. Comput. 10 (2000) 325-337
    • (2000) Stat. Comput. , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 16
    • 0000018490 scopus 로고
    • Sire evaluation for ordered categorical data with a threshold model
    • Gianola D., and Foulley J.-L. Sire evaluation for ordered categorical data with a threshold model. Genet. Sel. Evol. 15 (1983) 201-224
    • (1983) Genet. Sel. Evol. , vol.15 , pp. 201-224
    • Gianola, D.1    Foulley, J.-L.2
  • 17
    • 0034225899 scopus 로고    scopus 로고
    • A Monte Carlo EM method for estimating multinomial probit models
    • Natarajan R., McCulloch C.E., and Kiefer N.M. A Monte Carlo EM method for estimating multinomial probit models. Comput. Stat. Data Anal. 34 (2000) 33-50
    • (2000) Comput. Stat. Data Anal. , vol.34 , pp. 33-50
    • Natarajan, R.1    McCulloch, C.E.2    Kiefer, N.M.3
  • 18
    • 0035333729 scopus 로고    scopus 로고
    • Bayesian analysis of autocorrelated ordered categorical data for industrial quality monitoring
    • Girard P., and Parent E. Bayesian analysis of autocorrelated ordered categorical data for industrial quality monitoring. Technometrics 43 (2001) 180-191
    • (2001) Technometrics , vol.43 , pp. 180-191
    • Girard, P.1    Parent, E.2
  • 20
    • 70350471314 scopus 로고
    • Multilevel mixed linear models analysis using iterative generalized least squares
    • Goldstein H. Multilevel mixed linear models analysis using iterative generalized least squares. Biometrika 73 (1986) 43-56
    • (1986) Biometrika , vol.73 , pp. 43-56
    • Goldstein, H.1
  • 21
    • 0030865701 scopus 로고    scopus 로고
    • Linear mixed models with heterogeneous within-cluster variances
    • Lin X., Ray J., and Harlow S.D. Linear mixed models with heterogeneous within-cluster variances. Biometrics 53 (1997) 910-923
    • (1997) Biometrics , vol.53 , pp. 910-923
    • Lin, X.1    Ray, J.2    Harlow, S.D.3
  • 23
    • 33645764652 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 2 (2005) 1-19
    • (2005) Bayesian Anal. , vol.2 , pp. 1-19
    • Gelman, A.1
  • 26
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realized discrepancies
    • Gelman A., Meng X.L., and Stern H. Posterior predictive assessment of model fitness via realized discrepancies. Stat. Sin. 6 (1996) 733-807
    • (1996) Stat. Sin. , vol.6 , pp. 733-807
    • Gelman, A.1    Meng, X.L.2    Stern, H.3
  • 28
    • 34547699205 scopus 로고    scopus 로고
    • A note on the estimation of the multinomial logistic model with correlated responses in SAS
    • Kuss O., and McLerran D. A note on the estimation of the multinomial logistic model with correlated responses in SAS. Comput. Methods Programs Biomed. 87 (2007) 262-269
    • (2007) Comput. Methods Programs Biomed. , vol.87 , pp. 262-269
    • Kuss, O.1    McLerran, D.2
  • 29
    • 58549090692 scopus 로고    scopus 로고
    • Estimation in the probit normal model for binary outcomes using the SAEM algorithm
    • Meza C., Jaffrézic F., and Foulley J.-L. Estimation in the probit normal model for binary outcomes using the SAEM algorithm. Comput. Stat. Data Anal. 53 (2009) 1350-1360
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 1350-1360
    • Meza, C.1    Jaffrézic, F.2    Foulley, J.-L.3
  • 30


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.