메뉴 건너뛰기




Volumn 24, Issue 6, 2008, Pages 1405-1415

The boundary integral equation approach for numerical solution of the one-dimensional sine-gordon equation

Author keywords

Boundary integral equation; Conservation of energy; Dual reciprocity method; Sine Gordon equation

Indexed keywords


EID: 56249086875     PISSN: 0749159X     EISSN: 10982426     Source Type: Journal    
DOI: 10.1002/num.20325     Document Type: Article
Times cited : (48)

References (38)
  • 1
    • 31144471057 scopus 로고    scopus 로고
    • The tan h method and a variable separated ODE method for solving double sine‐Gordon equation
    • 1 A. M. Wazwaz, The tan h method and a variable separated ODE method for solving double sine‐Gordon equation, Phys Lett A 350 (2006), 367–370.
    • (2006) Phys Lett A , vol.350 , pp. 367-370
    • Wazwaz, A.M.1
  • 2
    • 50549175042 scopus 로고
    • A model unified field equation
    • 2 J. K. Perring and T. H. Skyrme, A model unified field equation, Nucl Phys 31 (1962), 550–555.
    • (1962) Nucl Phys , vol.31 , pp. 550-555
    • Perring, J.K.1    Skyrme, T.H.2
  • 3
    • 0004181419 scopus 로고    scopus 로고
    • Linear and nonlinear waves
    • 3 G. B. Whitham, Linear and nonlinear waves, Wiley‐Interscience, New York, NY, 1999.
    • (1999)
    • Whitham, G.B.1
  • 4
    • 0030413750 scopus 로고    scopus 로고
    • The solution of the sine‐Gordon equation using the method of lines
    • 4 A. G. Bratsos and E. H. Twizell, The solution of the sine‐Gordon equation using the method of lines, Int J Computer Math 61 (1996), 271–292.
    • (1996) Int J Computer Math , vol.61 , pp. 271-292
    • Bratsos, A.G.1    Twizell, E.H.2
  • 5
    • 35448960877 scopus 로고    scopus 로고
    • Numerical solution of the Klein–Gordon equation via He's variational iteration method
    • 5 F. Shakeri and M. Dehghan, Numerical solution of the Klein–Gordon equation via He's variational iteration method, Nonlinear Dyn 51 (2008), 89–97.
    • (2008) Nonlinear Dyn , vol.51 , pp. 89-97
    • Shakeri, F.1    Dehghan, M.2
  • 7
    • 44949267045 scopus 로고
    • Two classes of finite‐difference methods for generalized sine‐Gordon equations
    • 7 J. Kuang and L. Lu, Two classes of finite‐difference methods for generalized sine‐Gordon equations, J Comput Appl Math 31 (1990), 389–396.
    • (1990) J Comput Appl Math , vol.31 , pp. 389-396
    • Kuang, J.1    Lu, L.2
  • 8
    • 0001167255 scopus 로고
    • Numerical homoclinic instabilities in the sine‐Gordon equation
    • 8 B. M. Herbst and M. J. Ablowitz, Numerical homoclinic instabilities in the sine‐Gordon equation, Quaest Math 15 (1992), 345–363.
    • (1992) Quaest Math , vol.15 , pp. 345-363
    • Herbst, B.M.1    Ablowitz, M.J.2
  • 9
    • 0003757328 scopus 로고    scopus 로고
    • A family of parametric finite‐difference methods for the solution of the sine‐Gordon equation
    • 9 A. G. Bratsos and E. H. Twizell, A family of parametric finite‐difference methods for the solution of the sine‐Gordon equation, Appl Math Comput 93 (1998), 117–137.
    • (1998) Appl Math Comput , vol.93 , pp. 117-137
    • Bratsos, A.G.1    Twizell, E.H.2
  • 10
    • 16144366227 scopus 로고    scopus 로고
    • On the numerical solution of the sine‐Gordon equation, I. Integrable discretizations and homoclinic manifolds
    • 10 M. J. Ablowitz, B. M. Herbst, and C. M. Schober, On the numerical solution of the sine‐Gordon equation, I. Integrable discretizations and homoclinic manifolds, J Comput Phys 126 (1996), 299–314.
    • (1996) J Comput Phys , vol.126 , pp. 299-314
    • Ablowitz, M.J.1    Herbst, B.M.2    Schober, C.M.3
  • 11
    • 0039176497 scopus 로고    scopus 로고
    • On the numerical solution of the sine‐Gordon equation, II. Performance of numerical schemes
    • 11 M. J. Ablowitz, B. M. Herbst, and C. M. Schober, On the numerical solution of the sine‐Gordon equation, II. Performance of numerical schemes, J Comput Phys 131 (1997), 354–367.
    • (1997) J Comput Phys , vol.131 , pp. 354-367
    • Ablowitz, M.J.1    Herbst, B.M.2    Schober, C.M.3
  • 12
    • 0347945239 scopus 로고    scopus 로고
    • Discrete singular convolution for the sine‐Gordon equation
    • 12 G. W. Wei, Discrete singular convolution for the sine‐Gordon equation, Physica D 137 (2000), 247–259.
    • (2000) Physica D , vol.137 , pp. 247-259
    • Wei, G.W.1
  • 13
    • 0034923589 scopus 로고    scopus 로고
    • Symplectic computation of solitary waves for general sine‐Gordon equations
    • 13 X. Lu, Symplectic computation of solitary waves for general sine‐Gordon equations, Math Comput Simul 55 (2001), 519–532.
    • (2001) Math Comput Simul , vol.55 , pp. 519-532
    • Lu, X.1
  • 14
    • 27144491934 scopus 로고    scopus 로고
    • Exact solutions for the generalized sine‐Gordon and the generalized sinh‐Gordon equations
    • 14 A. M. Wazwaz, Exact solutions for the generalized sine‐Gordon and the generalized sinh‐Gordon equations, Chaos, Solitons and Fractals 28 (2006), 127–135.
    • (2006) Chaos, Solitons and Fractals , vol.28 , pp. 127-135
    • Wazwaz, A.M.1
  • 15
    • 85120592008 scopus 로고    scopus 로고
    • A numerical method for one‐dimensional nonlinear sine‐Gordon equation using collocation and radial basis functions
    • 15 M. Dehghan and A. Shokri, A numerical method for one‐dimensional nonlinear sine‐Gordon equation using collocation and radial basis functions, Numer Methods Partial Differential Equations, to appear.
    • Numer Methods Partial Differential Equations, to appear.
    • Dehghan, M.1    Shokri, A.2
  • 16
    • 35349016929 scopus 로고    scopus 로고
    • Numerical solution of sine‐Gordon equation by variational iteration method
    • 16 B. Batiha, M. S. M. Noorani, and I. Hashim, Numerical solution of sine‐Gordon equation by variational iteration method, Phys Lett A 370 (2007), 437–440.
    • (2007) Phys Lett A , vol.370 , pp. 437-440
    • Batiha, B.1    Noorani, M.S.M.2    Hashim, I.3
  • 17
    • 85120589878 scopus 로고    scopus 로고
    • Application of He's variational iteration method for solving the Cauchy reaction‐diffusion problem
    • 17 M. Dehghan and F. Shakeri, Application of He's variational iteration method for solving the Cauchy reaction‐diffusion problem, J Comput Appl Math, to appear.
    • J Comput Appl Math, to appear.
    • Dehghan, M.1    Shakeri, F.2
  • 18
    • 0001329612 scopus 로고
    • Numerical solutions of 2 + 1 dimensional sine‐Gordon solitons
    • 18 P. L. Christiansen and P. S. Lomdahl, Numerical solutions of 2 + 1 dimensional sine‐Gordon solitons, Physica D: Nonlinear phenomena 2 (1981), 482–494.
    • (1981) Physica D: Nonlinear phenomena , vol.2 , pp. 482-494
    • Christiansen, P.L.1    Lomdahl, P.S.2
  • 19
    • 0026124767 scopus 로고
    • Finite element approximation to two‐dimensional sine‐Gordon solitons
    • 19 J. Argyris, M. Haase, and J. C. Heinrich, Finite element approximation to two‐dimensional sine‐Gordon solitons, Comput Methods Appl Mech Eng 86 (1991), 1–26.
    • (1991) Comput Methods Appl Mech Eng , vol.86 , pp. 1-26
    • Argyris, J.1    Haase, M.2    Heinrich, J.C.3
  • 20
    • 18144406135 scopus 로고    scopus 로고
    • Numerical simulation of two‐dimensional sine‐Gordon solitons via a split cosine scheme
    • 20 Q. Sheng, A. Q. M. Khaliq, and D. A. Voss, Numerical simulation of two‐dimensional sine‐Gordon solitons via a split cosine scheme, Math Comput Simul 68 (2005), 355–373.
    • (2005) Math Comput Simul , vol.68 , pp. 355-373
    • Sheng, Q.1    Khaliq, A.Q.M.2    Voss, D.A.3
  • 21
    • 33847382284 scopus 로고    scopus 로고
    • An explicit numerical scheme for the sine‐Gordon equation in 2+1 dimensions
    • 21 A. G. Bratsos, An explicit numerical scheme for the sine‐Gordon equation in 2+1 dimensions, Appl Numer Anal Comput Math 2 (2005), 189–211.
    • (2005) Appl Numer Anal Comput Math , vol.2 , pp. 189-211
    • Bratsos, A.G.1
  • 22
    • 0029332275 scopus 로고
    • Numerical solutions of a damped sine‐Gordon equation in two space variables
    • 22 K. Djidjeli, W. G. Price, and E. H. Twizell, Numerical solutions of a damped sine‐Gordon equation in two space variables, J Eng Math 29 (1995), 347–369.
    • (1995) J Eng Math , vol.29 , pp. 347-369
    • Djidjeli, K.1    Price, W.G.2    Twizell, E.H.3
  • 23
    • 33847407493 scopus 로고    scopus 로고
    • A modified predictor‐corrector scheme for the two‐dimensional sine‐Gordon equation
    • 23 A. G. Bratsos, A modified predictor‐corrector scheme for the two‐dimensional sine‐Gordon equation, Numer Algor 43 (2006), 295–308.
    • (2006) Numer Algor , vol.43 , pp. 295-308
    • Bratsos, A.G.1
  • 24
    • 34249277434 scopus 로고    scopus 로고
    • The solution of the two‐dimensional sine‐Gordon equation using the method of lines
    • 24 A. G. Bratsos, The solution of the two‐dimensional sine‐Gordon equation using the method of lines, J Comput Appl Math 206 (2007), 251–277.
    • (2007) J Comput Appl Math , vol.206 , pp. 251-277
    • Bratsos, A.G.1
  • 25
    • 35748982165 scopus 로고    scopus 로고
    • A third order numerical scheme for the two‐dimensional sine‐Gordon equation
    • 25 A. G. Bratsos, A third order numerical scheme for the two‐dimensional sine‐Gordon equation, Math Comput Simul 76 (2007), 271–282.
    • (2007) Math Comput Simul , vol.76 , pp. 271-282
    • Bratsos, A.G.1
  • 26
    • 36048991845 scopus 로고    scopus 로고
    • The dual reciprocity boundary element method (DRBEM) for two‐dimensional sine‐Gordon equation
    • 26 M. Dehghan and D. Mirzaei, The dual reciprocity boundary element method (DRBEM) for two‐dimensional sine‐Gordon equation, Comput Methods Appl Mech Eng 197 (2008), 476–486.
    • (2008) Comput Methods Appl Mech Eng , vol.197 , pp. 476-486
    • Dehghan, M.1    Mirzaei, D.2
  • 27
    • 0001578881 scopus 로고
    • Dynamic analysis in solid mechanics by an alternative boundary element procedure
    • 27 C. A. Brebbia and D. Nardini, Dynamic analysis in solid mechanics by an alternative boundary element procedure, Int J Soil Dynamics Earthquake Eng 2 (1983), 228–233.
    • (1983) Int J Soil Dynamics Earthquake Eng , vol.2 , pp. 228-233
    • Brebbia, C.A.1    Nardini, D.2
  • 28
    • 0003048395 scopus 로고
    • The dual reciprocity boundary element method for the Helmholtz equation, in: Proceedings of the International Boundary Elements Symposium, Berlin
    • 28 P. W. Partridge and C. A. Brebbia, The dual reciprocity boundary element method for the Helmholtz equation, in: Proceedings of the International Boundary Elements Symposium, Berlin, C. A. Brebbia and A. Choudouet‐Miranda, editors, Computational Mechanics Publications/Springer,( 1990), pp. 543–555.
    • (1990) , pp. 543-555
    • Partridge, P.W.1    Brebbia, C.A.2
  • 29
    • 0002847155 scopus 로고
    • Radial basis function approximation in dual reciprocity method
    • 29 S. R. Karur and P. A. Ramachandran, Radial basis function approximation in dual reciprocity method, Math Comput Model 20 (1994), 59–70.
    • (1994) Math Comput Model , vol.20 , pp. 59-70
    • Karur, S.R.1    Ramachandran, P.A.2
  • 30
    • 33744510547 scopus 로고    scopus 로고
    • A numerical method for the wave equation subject to a non‐local conservation condition
    • 30 W. T. Ang, A numerical method for the wave equation subject to a non‐local conservation condition, Appl Numer Math 56 (2006), 1054–1060.
    • (2006) Appl Numer Math , vol.56 , pp. 1054-1060
    • Ang, W.T.1
  • 31
    • 0032042502 scopus 로고    scopus 로고
    • Dual reciprocity boundary element analysis of time‐independent Burger's equation
    • 31 E. Chino and N. Tosaka, Dual reciprocity boundary element analysis of time‐independent Burger's equation, Eng Anal Bound Elem 21 (1998), 261–270.
    • (1998) Eng Anal Bound Elem , vol.21 , pp. 261-270
    • Chino, E.1    Tosaka, N.2
  • 32
    • 11144275388 scopus 로고    scopus 로고
    • On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation
    • 32 M. Dehghan, On the solution of an initial‐boundary value problem that combines Neumann and integral condition for the wave equation, Numer Methods Partial Differential Equations 21 (2005), 24–40.
    • (2005) Numer Methods Partial Differential Equations , vol.21 , pp. 24-40
    • Dehghan, M.1
  • 33
    • 19744375661 scopus 로고    scopus 로고
    • Parameter determination in a partial differential equation from the overspecified data
    • 33 M. Dehghan, Parameter determination in a partial differential equation from the overspecified data, Math Comput Model 41 (2005), 196–213.
    • (2005) Math Comput Model , vol.41 , pp. 196-213
    • Dehghan, M.1
  • 34
    • 18744412104 scopus 로고    scopus 로고
    • Identification of a time‐dependent coefficient in a partial differential equation subject to an extra measurement
    • 34 M. Dehghan, Identification of a time‐dependent coefficient in a partial differential equation subject to an extra measurement, Numer Methods Partial Differential Equations 21 (2005), 611–622.
    • (2005) Numer Methods Partial Differential Equations , vol.21 , pp. 611-622
    • Dehghan, M.1
  • 35
    • 33748938323 scopus 로고    scopus 로고
    • Implicit collocation technique for heat equation with non‐classic initial condition
    • 35 M. Dehghan, Implicit collocation technique for heat equation with non‐classic initial condition, Int J Non‐Linear Sci Numer Simul 7 (2006), 447–450.
    • (2006) Int J Non‐Linear Sci Numer Simul , vol.7 , pp. 447-450
    • Dehghan, M.1
  • 36
    • 33645276878 scopus 로고    scopus 로고
    • A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications
    • 36 M. Dehghan, A computational study of the one‐dimensional parabolic equation subject to nonclassical boundary specifications, Numer Methods Partial Differential Equations 22 (2006), 220–257.
    • (2006) Numer Methods Partial Differential Equations , vol.22 , pp. 220-257
    • Dehghan, M.1
  • 37
    • 33749559910 scopus 로고    scopus 로고
    • The one‐dimensional heat equation subject to a boundary integral specification
    • 37 M. Dehghan, The one‐dimensional heat equation subject to a boundary integral specification, Chaos, Solitons and Fractals 32 (2007), 661–675.
    • (2007) Chaos, Solitons and Fractals , vol.32 , pp. 661-675
    • Dehghan, M.1
  • 38
    • 34548359104 scopus 로고    scopus 로고
    • A numerical method for KdV equation using collocation and radial basis functions
    • 38 M. Dehghan and A. Shokri, A numerical method for KdV equation using collocation and radial basis functions, Nonlinear Dynam 50 (2007), 111–120.
    • (2007) Nonlinear Dynam , vol.50 , pp. 111-120
    • Dehghan, M.1    Shokri, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.