메뉴 건너뛰기




Volumn 16, Issue 3-4, 2009, Pages 673-686

Monotone linear relations: Maximality and fitzpatrick functions

Author keywords

Adjoint process; Fenchel conjugate; Fitzpatrick family; Fitzpatrick function; Linear relation; Maximal monotone operator; Monotone operator; Skew linear relation

Indexed keywords


EID: 73349135630     PISSN: 09446532     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (31)

References (25)
  • 1
    • 84972544437 scopus 로고
    • Operation calculus on linear relations
    • R. Arens: Operation calculus on linear relations, Pac. J. Math. 19 (1961) 9-23.
    • (1961) Pac. J. Math , vol.19 , pp. 9-23
    • Arens, R.1
  • 4
    • 49449086907 scopus 로고    scopus 로고
    • Fitzpatrick functions and continuous linear monotone operators
    • H. H. Bauschke, J. M. Borwein, X. Wang: Fitzpatrick functions and continuous linear monotone operators, SIAM J. Optim. 18 (2007) 789-809.
    • (2007) SIAM J. Optim , vol.18 , pp. 789-809
    • Bauschke, H.H.1    Borwein, J.M.2    Wang, X.3
  • 5
    • 33846522955 scopus 로고    scopus 로고
    • H. H. Bauschke, D. A. McLaren, H. S. Sendov: Fitzpatrick functions: inequalities, examples, and remarks on a problem by S. Fitzpatrick, J. Convex Analysis 13 (2006) 499-523.
    • H. H. Bauschke, D. A. McLaren, H. S. Sendov: Fitzpatrick functions: inequalities, examples, and remarks on a problem by S. Fitzpatrick, J. Convex Analysis 13 (2006) 499-523.
  • 6
    • 0020799321 scopus 로고
    • Adjoint process duality
    • J. M. Borwein: Adjoint process duality, Math. Oper. Res. 8 (1983) 403-434.
    • (1983) Math. Oper. Res , vol.8 , pp. 403-434
    • Borwein, J.M.1
  • 7
    • 0040319084 scopus 로고
    • Linear maximal monotone operators and singular nonlinear integral equations of Hammerstein type
    • L. Cesari et al, ed, Academic Press, New York
    • H. Brézis, F. E. Browder: Linear maximal monotone operators and singular nonlinear integral equations of Hammerstein type, in: Nonlinear Analysis, L. Cesari et al. (ed.), Academic Press, New York (1978) 31-42.
    • (1978) Nonlinear Analysis , pp. 31-42
    • Brézis, H.1    Browder, F.E.2
  • 8
    • 0036034569 scopus 로고    scopus 로고
    • Maximal monotone operators, convex functions and a special family of enlargements
    • R. S. Burachik, B. F. Svaiter: Maximal monotone operators, convex functions and a special family of enlargements, Set-Valued Anal. 10 (2002) 297-316.
    • (2002) Set-Valued Anal , vol.10 , pp. 297-316
    • Burachik, R.S.1    Svaiter, B.F.2
  • 9
    • 58149150187 scopus 로고    scopus 로고
    • Operating enlargements of monotone operators, Pac
    • R. S. Burachik, B. F. Svaiter: Operating enlargements of monotone operators, Pac. J. Optim. 2 (2006) 425-445.
    • (2006) J. Optim , vol.2 , pp. 425-445
    • Burachik, R.S.1    Svaiter, B.F.2
  • 10
    • 55549108063 scopus 로고    scopus 로고
    • A proximal-projection method for finding zeros of set-valued operators
    • D. Butnariu, G. Kassay: A proximal-projection method for finding zeros of set-valued operators, SIAM J. Control Optimization 4 (2008) 2096-2136.
    • (2008) SIAM J. Control Optimization , vol.4 , pp. 2096-2136
    • Butnariu, D.1    Kassay, G.2
  • 13
    • 70349761459 scopus 로고    scopus 로고
    • Maximal monotone operators with a unique extension to the bidual
    • M. Marques Alves, B. F. Svaiter: Maximal monotone operators with a unique extension to the bidual, J. Convex Analysis 16 (2008) 409-421.
    • (2008) J. Convex Analysis , vol.16 , pp. 409-421
    • Marques Alves, M.1    Svaiter, B.F.2
  • 14
    • 0038570235 scopus 로고    scopus 로고
    • A convex representation of maximal monotone operators
    • J.-E. Martínez-Legaz, M. Théra: A convex representation of maximal monotone operators, J. Nonlinear Convex Anal. 2 (2001) 243-247.
    • (2001) J. Nonlinear Convex Anal , vol.2 , pp. 243-247
    • Martínez-Legaz, J.-E.1    Théra, M.2
  • 15
    • 4243129234 scopus 로고    scopus 로고
    • The relevance of convex analysis for the study of monotonicity
    • J.-P. Penot: The relevance of convex analysis for the study of monotonicity, Nonlinear Anal., Theory Methods Appl. 58A (2004) 855-871.
    • (2004) Nonlinear Anal., Theory Methods Appl , vol.58 A , pp. 855-871
    • Penot, J.-P.1
  • 17
    • 22444453086 scopus 로고    scopus 로고
    • Unbounded linear monotone operators on nonreflexive Banach spaces
    • R. R. Phelps, S. Simons: Unbounded linear monotone operators on nonreflexive Banach spaces, J. Convex Analysis 5 (1998) 303-328.
    • (1998) J. Convex Analysis , vol.5 , pp. 303-328
    • Phelps, R.R.1    Simons, S.2
  • 18
    • 0004267646 scopus 로고
    • Princeton University Press, Princeton
    • R. T. Rockafellar: Convex Analysis, Princeton University Press, Princeton (1970).
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 21
    • 33745936299 scopus 로고    scopus 로고
    • Fenchel duality, Fitzpatrick functions and maximal monotonicity
    • S. Simons, C. Zǎlinescu: Fenchel duality, Fitzpatrick functions and maximal monotonicity, J. Nonlinear Convex Anal. 6 (2005) 1-22.
    • (2005) J. Nonlinear Convex Anal , vol.6 , pp. 1-22
    • Simons, S.1    Zǎlinescu, C.2
  • 22
    • 73349093578 scopus 로고    scopus 로고
    • M. D. Voisei: The sum theorem for linear maximal monotone operators, Math. Sci. Res. J. 10 (2006) 83-85.
    • M. D. Voisei: The sum theorem for linear maximal monotone operators, Math. Sci. Res. J. 10 (2006) 83-85.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.