-
1
-
-
84949479246
-
On the surprising behavior of distance metrics in high dimensional spaces
-
C. C. Aggarwal, A. Hinneburg, and D.A. Keim. On the surprising behavior of distance metrics in high dimensional spaces. In Proc. ICDT, 420-434, 2001.
-
(2001)
Proc. ICDT
, vol.420-434
-
-
Aggarwal, C.C.1
Hinneburg, A.2
Keim, D.A.3
-
2
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. ACM SIGMOD, pages 94-105, 1998.
-
(1998)
Proc. ACM SIGMOD
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
3
-
-
0001882616
-
Fast algorithms for mining association rules
-
R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. VLDB, pages 487-499, 1994.
-
(1994)
Proc. VLDB
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
4
-
-
12244300524
-
A probabilistic framework for semi-supervised clustering
-
S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. In KDD, pages 59-68, 2004.
-
(2004)
KDD
, pp. 59-68
-
-
Basu, S.1
Bilenko, M.2
Mooney, R.J.3
-
5
-
-
47249137675
-
Dusc: Dimensionality unbiased subspace clustering
-
I. Assent, R. Krieger, E. Muller, and T. Seidl. Dusc: Dimensionality unbiased subspace clustering. In Proc. IEEE ICDM, pages 409-414, 2007.
-
(2007)
Proc. IEEE ICDM
, pp. 409-414
-
-
Assent, I.1
Krieger, R.2
Muller, E.3
Seidl, T.4
-
6
-
-
33645319789
-
Constraint-based concept mining and its application to microarray data analysis
-
J. Besson, C. Robardet, J-F. Boulicaut, and S. Rome. Constraint-based concept mining and its application to microarray data analysis. Intell. Data Anal, 9(1):59-82, 2005.
-
(2005)
Intell. Data Anal
, vol.9
, Issue.1
, pp. 59-82
-
-
Besson, J.1
Robardet, C.2
Boulicaut, J.-F.3
Rome, S.4
-
7
-
-
21844452080
-
Integrating constraints and metric learning in semi-supervised clustering
-
M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints and metric learning in semi-supervised clustering. In Proc. ICML, page 11, 2004.
-
(2004)
Proc. ICML
, pp. 11
-
-
Bilenko, M.1
Basu, S.2
Mooney, R.J.3
-
8
-
-
52649145774
-
Mining views: Database views for data mining
-
H. Blockeel, T. Calders, E. Fromont, B. Goethals, and A Prado. Mining views: Database views for data mining. In Proc. IEEE ICDE, pages 1608-1611, 2008.
-
(2008)
Proc. IEEE ICDE
, pp. 1608-1611
-
-
Blockeel, H.1
Calders, T.2
Fromont, E.3
Goethals, B.4
Prado, A.5
-
9
-
-
43349105880
-
Hissclu: A hierarchical density-based method for semi-supervised clustering
-
C. Böhm and C. Plant. Hissclu: a hierarchical density-based method for semi-supervised clustering. In Proc. EDBT, pages 440-451, 2008.
-
(2008)
Proc. EDBT
, pp. 440-451
-
-
Böhm, C.1
Plant, C.2
-
10
-
-
9444236236
-
Adaptive constraint pushing in frequent pattern mining
-
F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Adaptive constraint pushing in frequent pattern mining. In Proc. PKDD, pages 47-58, 2003.
-
(2003)
Proc. PKDD
, pp. 47-58
-
-
Bonchi, F.1
Giannotti, F.2
Mazzanti, A.3
Pedreschi, D.4
-
11
-
-
4243071596
-
The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum
-
Z. Bozdech, M. Llinás, B. Lee Pulliam, E.D. Wong, J. Zhu, and J.L. DeRisi. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biology, 1(1): 1-16, 2003.
-
(2003)
PLoS Biology
, vol.1
, Issue.1
, pp. 1-16
-
-
Bozdech, Z.1
Llinás, M.2
Lee Pulliam, B.3
Wong, E.D.4
Zhu, J.5
DeRisi, J.L.6
-
12
-
-
0002646822
-
Entropy-based subspace clustering for mining numerical data
-
C-H. Cheng, A. W.Fu, and Y. Zhang. Entropy-based subspace clustering for mining numerical data. In Proc. KDD, pages 84-93, 1999.
-
(1999)
Proc. KDD
, pp. 84-93
-
-
Cheng, C.-H.1
Fu, A.W.2
Zhang, Y.3
-
13
-
-
84880095768
-
Clustering with constraints: Feasibility issues and the k-means algorithm
-
I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues and the k-means algorithm. In Proc. SDM, 2005.
-
(2005)
Proc. SDM
-
-
Davidson, I.1
Ravi, S.S.2
-
14
-
-
26844506362
-
A generic algorithm for generating closed sets of a binary relation
-
A. Gély. A generic algorithm for generating closed sets of a binary relation. In Proc. ICFCA, pages 223-234, 2005.
-
(2005)
Proc. ICFCA
, pp. 223-234
-
-
Gély, A.1
-
16
-
-
0039253846
-
Mining frequent patterns without candidate generation
-
J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In Proc. ACM SIGMOD, pages 1-12, 2000.
-
(2000)
Proc. ACM SIGMOD
, pp. 1-12
-
-
Han, J.1
Pei, J.2
Yin, Y.3
-
17
-
-
0141983698
-
Optimization of association rule mining queries
-
B. Jeudy and J-F Boulicaut. Optimization of association rule mining queries. Intell. Data Anal., 6(4):341-357, 2002.
-
(2002)
Intell. Data Anal
, vol.6
, Issue.4
, pp. 341-357
-
-
Jeudy, B.1
Boulicaut, J.-F.2
-
18
-
-
26944481948
-
Subspace clustering of text documents with feature weighting -means algorithm
-
L. Jing, M. K. Ng, J. Xu, and J. Z. Huang. Subspace clustering of text documents with feature weighting -means algorithm. In Proc. PAKDD, pages 802-812, 2005.
-
(2005)
Proc. PAKDD
, pp. 802-812
-
-
Jing, L.1
Ng, M.K.2
Xu, J.3
Huang, J.Z.4
-
19
-
-
33750297146
-
Density-connected subspace clustering for high-dimensional data
-
K. Railing, H. P. Kriegel, and P. Krger. Density-connected subspace clustering for high-dimensional data. In Proc. SDM, pages 246-257, 2004.
-
(2004)
Proc. SDM
, pp. 246-257
-
-
Railing, K.1
Kriegel, H.P.2
Krger, P.3
-
20
-
-
85003961474
-
Lb-keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures
-
E. Keogh, L. Wei, X. Xi, S-H Lee, and M. Vlachos. Lb-keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures. In Proc. VLDB, pages 882-893, 2006.
-
(2006)
Proc. VLDB
, pp. 882-893
-
-
Keogh, E.1
Wei, L.2
Xi, X.3
Lee, S.-H.4
Vlachos, M.5
-
21
-
-
9444294778
-
From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
-
D. Klein, S. D. Kamvar, and C. D. Manning. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In Proc. ICML, pages 307-314, 2002.
-
(2002)
Proc. ICML
, pp. 307-314
-
-
Klein, D.1
Kamvar, S.D.2
Manning, C.D.3
-
22
-
-
34548723854
-
Distance based subspace clustering with flexible dimension partitioning
-
G. Liu, J. Li, K. Sim, and L. Wong. Distance based subspace clustering with flexible dimension partitioning. In Proc. IEEE ICDE, pages 1250-1254, 2007.
-
(2007)
Proc. IEEE ICDE
, pp. 1250-1254
-
-
Liu, G.1
Li, J.2
Sim, K.3
Wong, L.4
-
23
-
-
0242387333
-
Mafia: Efficient and scalable subspace clustering for very large data sets
-
Tech. Rep. CPDC-TR-9906-010, Northwestern University
-
H. Nagesh, S. Goil, and A. Choudhary. Mafia: Efficient and scalable subspace clustering for very large data sets. Tech. Rep. CPDC-TR-9906-010, Northwestern University, 1999.
-
(1999)
-
-
Nagesh, H.1
Goil, S.2
Choudhary, A.3
-
25
-
-
17044376078
-
Subspace clustering for high dimensional data: A review
-
90-105
-
L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl., 6(1):90-105, 2004.
-
(2004)
SIGKDD Explor. Newsl
, vol.6
, Issue.1
-
-
Parsons, L.1
Haque, E.2
Liu, H.3
-
26
-
-
38049081595
-
C-dbscan: Density-based clustering with constraints
-
C. Ruiz, M. Spiliopoulou, and E. M. Ruiz. C-dbscan: Density-based clustering with constraints. In RSFDGrC, volume 4482, pages 216-223, 2007.
-
(2007)
RSFDGrC
, vol.4482
, pp. 216-223
-
-
Ruiz, C.1
Spiliopoulou, M.2
Ruiz, E.M.3
-
27
-
-
19544389465
-
Schism: A new approach for interesting subspace mining
-
K. Sequeira and M. J. Zaki. Schism: A new approach for interesting subspace mining. In Proc. IEEE ICDM, pages 186-193, 2004.
-
(2004)
Proc. IEEE ICDM
, pp. 186-193
-
-
Sequeira, K.1
Zaki, M.J.2
-
28
-
-
38049185000
-
Clustering trees with instance level constraints
-
J. Struyf and S. Dzeroski. Clustering trees with instance level constraints. In ECML, pages 359-370, 2007.
-
(2007)
ECML
, pp. 359-370
-
-
Struyf, J.1
Dzeroski, S.2
-
30
-
-
0042377235
-
Constrained k-means clustering with background knowledge
-
K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with background knowledge. In Proc. ICML, pages 577-584, 2001.
-
(2001)
Proc. ICML
, pp. 577-584
-
-
Wagstaff, K.1
Cardie, C.2
Rogers, S.3
Schroedl, S.4
|