메뉴 건너뛰기




Volumn 1, Issue , 2009, Pages 25-36

Constraint-based subspace clustering

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER ANALYSIS; DATA MINING; EFFICIENCY;

EID: 72949086267     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (31)
  • 1
    • 84949479246 scopus 로고    scopus 로고
    • On the surprising behavior of distance metrics in high dimensional spaces
    • C. C. Aggarwal, A. Hinneburg, and D.A. Keim. On the surprising behavior of distance metrics in high dimensional spaces. In Proc. ICDT, 420-434, 2001.
    • (2001) Proc. ICDT , vol.420-434
    • Aggarwal, C.C.1    Hinneburg, A.2    Keim, D.A.3
  • 2
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. ACM SIGMOD, pages 94-105, 1998.
    • (1998) Proc. ACM SIGMOD , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 3
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. VLDB, pages 487-499, 1994.
    • (1994) Proc. VLDB , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 4
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering
    • S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. In KDD, pages 59-68, 2004.
    • (2004) KDD , pp. 59-68
    • Basu, S.1    Bilenko, M.2    Mooney, R.J.3
  • 5
    • 47249137675 scopus 로고    scopus 로고
    • Dusc: Dimensionality unbiased subspace clustering
    • I. Assent, R. Krieger, E. Muller, and T. Seidl. Dusc: Dimensionality unbiased subspace clustering. In Proc. IEEE ICDM, pages 409-414, 2007.
    • (2007) Proc. IEEE ICDM , pp. 409-414
    • Assent, I.1    Krieger, R.2    Muller, E.3    Seidl, T.4
  • 6
    • 33645319789 scopus 로고    scopus 로고
    • Constraint-based concept mining and its application to microarray data analysis
    • J. Besson, C. Robardet, J-F. Boulicaut, and S. Rome. Constraint-based concept mining and its application to microarray data analysis. Intell. Data Anal, 9(1):59-82, 2005.
    • (2005) Intell. Data Anal , vol.9 , Issue.1 , pp. 59-82
    • Besson, J.1    Robardet, C.2    Boulicaut, J.-F.3    Rome, S.4
  • 7
    • 21844452080 scopus 로고    scopus 로고
    • Integrating constraints and metric learning in semi-supervised clustering
    • M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints and metric learning in semi-supervised clustering. In Proc. ICML, page 11, 2004.
    • (2004) Proc. ICML , pp. 11
    • Bilenko, M.1    Basu, S.2    Mooney, R.J.3
  • 9
    • 43349105880 scopus 로고    scopus 로고
    • Hissclu: A hierarchical density-based method for semi-supervised clustering
    • C. Böhm and C. Plant. Hissclu: a hierarchical density-based method for semi-supervised clustering. In Proc. EDBT, pages 440-451, 2008.
    • (2008) Proc. EDBT , pp. 440-451
    • Böhm, C.1    Plant, C.2
  • 10
    • 9444236236 scopus 로고    scopus 로고
    • Adaptive constraint pushing in frequent pattern mining
    • F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Adaptive constraint pushing in frequent pattern mining. In Proc. PKDD, pages 47-58, 2003.
    • (2003) Proc. PKDD , pp. 47-58
    • Bonchi, F.1    Giannotti, F.2    Mazzanti, A.3    Pedreschi, D.4
  • 11
    • 4243071596 scopus 로고    scopus 로고
    • The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum
    • Z. Bozdech, M. Llinás, B. Lee Pulliam, E.D. Wong, J. Zhu, and J.L. DeRisi. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biology, 1(1): 1-16, 2003.
    • (2003) PLoS Biology , vol.1 , Issue.1 , pp. 1-16
    • Bozdech, Z.1    Llinás, M.2    Lee Pulliam, B.3    Wong, E.D.4    Zhu, J.5    DeRisi, J.L.6
  • 12
    • 0002646822 scopus 로고    scopus 로고
    • Entropy-based subspace clustering for mining numerical data
    • C-H. Cheng, A. W.Fu, and Y. Zhang. Entropy-based subspace clustering for mining numerical data. In Proc. KDD, pages 84-93, 1999.
    • (1999) Proc. KDD , pp. 84-93
    • Cheng, C.-H.1    Fu, A.W.2    Zhang, Y.3
  • 13
    • 84880095768 scopus 로고    scopus 로고
    • Clustering with constraints: Feasibility issues and the k-means algorithm
    • I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues and the k-means algorithm. In Proc. SDM, 2005.
    • (2005) Proc. SDM
    • Davidson, I.1    Ravi, S.S.2
  • 14
    • 26844506362 scopus 로고    scopus 로고
    • A generic algorithm for generating closed sets of a binary relation
    • A. Gély. A generic algorithm for generating closed sets of a binary relation. In Proc. ICFCA, pages 223-234, 2005.
    • (2005) Proc. ICFCA , pp. 223-234
    • Gély, A.1
  • 16
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In Proc. ACM SIGMOD, pages 1-12, 2000.
    • (2000) Proc. ACM SIGMOD , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 17
    • 0141983698 scopus 로고    scopus 로고
    • Optimization of association rule mining queries
    • B. Jeudy and J-F Boulicaut. Optimization of association rule mining queries. Intell. Data Anal., 6(4):341-357, 2002.
    • (2002) Intell. Data Anal , vol.6 , Issue.4 , pp. 341-357
    • Jeudy, B.1    Boulicaut, J.-F.2
  • 18
    • 26944481948 scopus 로고    scopus 로고
    • Subspace clustering of text documents with feature weighting -means algorithm
    • L. Jing, M. K. Ng, J. Xu, and J. Z. Huang. Subspace clustering of text documents with feature weighting -means algorithm. In Proc. PAKDD, pages 802-812, 2005.
    • (2005) Proc. PAKDD , pp. 802-812
    • Jing, L.1    Ng, M.K.2    Xu, J.3    Huang, J.Z.4
  • 19
    • 33750297146 scopus 로고    scopus 로고
    • Density-connected subspace clustering for high-dimensional data
    • K. Railing, H. P. Kriegel, and P. Krger. Density-connected subspace clustering for high-dimensional data. In Proc. SDM, pages 246-257, 2004.
    • (2004) Proc. SDM , pp. 246-257
    • Railing, K.1    Kriegel, H.P.2    Krger, P.3
  • 20
    • 85003961474 scopus 로고    scopus 로고
    • Lb-keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures
    • E. Keogh, L. Wei, X. Xi, S-H Lee, and M. Vlachos. Lb-keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures. In Proc. VLDB, pages 882-893, 2006.
    • (2006) Proc. VLDB , pp. 882-893
    • Keogh, E.1    Wei, L.2    Xi, X.3    Lee, S.-H.4    Vlachos, M.5
  • 21
    • 9444294778 scopus 로고    scopus 로고
    • From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
    • D. Klein, S. D. Kamvar, and C. D. Manning. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In Proc. ICML, pages 307-314, 2002.
    • (2002) Proc. ICML , pp. 307-314
    • Klein, D.1    Kamvar, S.D.2    Manning, C.D.3
  • 22
    • 34548723854 scopus 로고    scopus 로고
    • Distance based subspace clustering with flexible dimension partitioning
    • G. Liu, J. Li, K. Sim, and L. Wong. Distance based subspace clustering with flexible dimension partitioning. In Proc. IEEE ICDE, pages 1250-1254, 2007.
    • (2007) Proc. IEEE ICDE , pp. 1250-1254
    • Liu, G.1    Li, J.2    Sim, K.3    Wong, L.4
  • 23
    • 0242387333 scopus 로고    scopus 로고
    • Mafia: Efficient and scalable subspace clustering for very large data sets
    • Tech. Rep. CPDC-TR-9906-010, Northwestern University
    • H. Nagesh, S. Goil, and A. Choudhary. Mafia: Efficient and scalable subspace clustering for very large data sets. Tech. Rep. CPDC-TR-9906-010, Northwestern University, 1999.
    • (1999)
    • Nagesh, H.1    Goil, S.2    Choudhary, A.3
  • 25
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • 90-105
    • L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl., 6(1):90-105, 2004.
    • (2004) SIGKDD Explor. Newsl , vol.6 , Issue.1
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 26
    • 38049081595 scopus 로고    scopus 로고
    • C-dbscan: Density-based clustering with constraints
    • C. Ruiz, M. Spiliopoulou, and E. M. Ruiz. C-dbscan: Density-based clustering with constraints. In RSFDGrC, volume 4482, pages 216-223, 2007.
    • (2007) RSFDGrC , vol.4482 , pp. 216-223
    • Ruiz, C.1    Spiliopoulou, M.2    Ruiz, E.M.3
  • 27
    • 19544389465 scopus 로고    scopus 로고
    • Schism: A new approach for interesting subspace mining
    • K. Sequeira and M. J. Zaki. Schism: A new approach for interesting subspace mining. In Proc. IEEE ICDM, pages 186-193, 2004.
    • (2004) Proc. IEEE ICDM , pp. 186-193
    • Sequeira, K.1    Zaki, M.J.2
  • 28
    • 38049185000 scopus 로고    scopus 로고
    • Clustering trees with instance level constraints
    • J. Struyf and S. Dzeroski. Clustering trees with instance level constraints. In ECML, pages 359-370, 2007.
    • (2007) ECML , pp. 359-370
    • Struyf, J.1    Dzeroski, S.2
  • 30
    • 0042377235 scopus 로고    scopus 로고
    • Constrained k-means clustering with background knowledge
    • K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering with background knowledge. In Proc. ICML, pages 577-584, 2001.
    • (2001) Proc. ICML , pp. 577-584
    • Wagstaff, K.1    Cardie, C.2    Rogers, S.3    Schroedl, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.