메뉴 건너뛰기




Volumn 1, Issue , 2009, Pages 37-47

Integrated KL (K-means - Laplacian) clustering: A new clustering approach by combining attribute data and pairwise relations

Author keywords

[No Author keywords available]

Indexed keywords

ATTRIBUTE DATA; BENCHMARK DATA; CLUSTERING APPROACH; CLUSTERING METHODS; CLUSTERING RESULTS; DATA ATTRIBUTES; DATA EMBEDDING; DATA OBJECTS; DATA SETS; DATA SOURCE; K-MEANS; K-MEANS CLUSTERING; LAPLACIANS; METRIC LEARNING; MULTIPLE SOURCE; NORMALIZED CUTS; REAL APPLICATIONS; SEMI-SUPERVISED CLUSTERING; SPECTRAL CLUSTERING; TRADITIONAL CLUSTERING;

EID: 72849138419     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (39)

References (43)
  • 4
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15:1373-1396, 2003.
    • (2003) Neural Computation , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 36348971175 scopus 로고    scopus 로고
    • Entity resolution in graph data
    • Technical report, University of Maryland, College Park, October
    • Indrajit Bhattacharya and Lise Getoor. Entity resolution in graph data. Technical report, University of Maryland, College Park, October 2005.
    • (2005)
    • Bhattacharya, I.1    Getoor, L.2
  • 8
    • 22644451496 scopus 로고    scopus 로고
    • Principal direction divisive partitioning
    • D. Boley. Principal direction divisive partitioning. Data Mining and Knowledge Discovery, 2:325-344, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 325-344
    • Boley, D.1
  • 9
    • 0003825410 scopus 로고    scopus 로고
    • Multidimensional scaling
    • T. F. Cox, M. A. A. Cox, and B. Raton. Multidimensional scaling. Technometrics, 45(2):182, 2003.
    • (2003) Technometrics , vol.45 , Issue.2 , pp. 182
    • Cox, T.F.1    Cox, M.A.A.2    Raton, B.3
  • 10
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering. Machine Learning, 42(1):143-175, 2001.
    • (2001) Machine Learning , vol.42 , Issue.1 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 11
    • 14344257496 scopus 로고    scopus 로고
    • K-means clustering and principal component analysis. Int'l Conf
    • C. Ding and X. He. K-means clustering and principal component analysis. Int'l Conf. Machine Learning (ICML), 2004.
    • (2004) Machine Learning , vol.949
    • Ding, C.1    He, X.2
  • 13
    • 6344279447 scopus 로고    scopus 로고
    • Multi-relational data mining: An introduction
    • 1-16
    • Sašo Džeroski. Multi-relational data mining: an introduction. SIGKDD Explor. Newsl., 5(1):1-16, 2003.
    • (2003) SIGKDD Explor. Newsl , vol.5 , Issue.1
    • Džeroski, S.1
  • 22
    • 33749541707 scopus 로고    scopus 로고
    • Zhongfei (Mark) Zhang, and Philip S. Yu. Unsupervised learning on k-partite graphs
    • Bo Long, Xiaoyun Wu, Zhongfei (Mark) Zhang, and Philip S. Yu. Unsupervised learning on k-partite graphs. In Proceedings of ACM SIGKDD, pages 317-326, 2006.
    • (2006) Proceedings of ACM SIGKDD , pp. 317-326
    • Long, B.1    Wu, X.2
  • 25
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 26
    • 1942517347 scopus 로고    scopus 로고
    • N. Shental and D. Weinshall. Learning distance functions using equivalence relations. In In Proceedings of the Twentieth International Conference on Machine Learning, pages 11-18, 2003.
    • N. Shental and D. Weinshall. Learning distance functions using equivalence relations. In In Proceedings of the Twentieth International Conference on Machine Learning, pages 11-18, 2003.
  • 28
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining multiple partitions
    • A. Strehl, J. Ghosh, and C. Cardie. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3:583-617, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2    Cardie, C.3
  • 29
    • 84880884400 scopus 로고    scopus 로고
    • Ben Taskar, Eran Segal, and Daphne Koller. Probabilistic classification and clustering in relational data. In In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, pages 870-878, 2001.
    • Ben Taskar, Eran Segal, and Daphne Koller. Probabilistic classification and clustering in relational data. In In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, pages 870-878, 2001.
  • 30
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 41
    • 0344551898 scopus 로고    scopus 로고
    • S. X. Yu and J. Shi. Multiclass spectral clustering. In In International Conference on Computer Vision, pages 313-319, 2003.
    • S. X. Yu and J. Shi. Multiclass spectral clustering. In In International Conference on Computer Vision, pages 313-319, 2003.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.