메뉴 건너뛰기




Volumn , Issue , 2009, Pages 453-460

Why one must use reweighting in estimation of distribution algorithms

Author keywords

Estimation of distribution algorithms; Premature convergence; Reweighting

Indexed keywords

ESTIMATION OF DISTRIBUTION ALGORITHMS; PREMATURE CONVERGENCE; SIMPLE MODIFICATIONS; UNBIASED ESTIMATES;

EID: 72749121071     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1569901.1569964     Document Type: Conference Paper
Times cited : (12)

References (29)
  • 1
    • 72749089788 scopus 로고    scopus 로고
    • Literary digest, 1936
    • Literary digest, 1936.
  • 3
    • 0003984832 scopus 로고
    • Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning,
    • Technical Report CMU-CS-94-163, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
    • S. Baluja. Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning,. Technical Report CMU-CS-94-163, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1994.
    • (1994)
    • Baluja, S.1
  • 16
    • 15544390134 scopus 로고    scopus 로고
    • The estimation of distributions and the minimum relative entropy principle
    • H. Mühlenbein and R. Höns. The estimation of distributions and the minimum relative entropy principle. Evolutionary Computation, 13(1):1-27, 2005.
    • (2005) Evolutionary Computation , vol.13 , Issue.1 , pp. 1-27
    • Mühlenbein, H.1    Höns, R.2
  • 17
    • 0037174205 scopus 로고    scopus 로고
    • Evolutionary computation and Wright's equation
    • H. Mühlenbein and T. Mahnig. Evolutionary computation and Wright's equation. Theoretical Computer Science, 287(1):145-165, 2002.
    • (2002) Theoretical Computer Science , vol.287 , Issue.1 , pp. 145-165
    • Mühlenbein, H.1    Mahnig, T.2
  • 19
    • 72749100599 scopus 로고    scopus 로고
    • A. B. Owen. Quasi-Monte Carlo sampling. In H. W. Jensen, editor, Monte Carlo Ray Tracing: Siggraph 2003 Course 44, pages 69-88. SIGGRAPH, 2003.
    • A. B. Owen. Quasi-Monte Carlo sampling. In H. W. Jensen, editor, Monte Carlo Ray Tracing: Siggraph 2003 Course 44, pages 69-88. SIGGRAPH, 2003.
  • 20
    • 56449110315 scopus 로고    scopus 로고
    • P. Pos?́k. Preventing premature convergence in a simple eda via global step size setting. In PPSN, pages 549-558, 2008.
    • P. Pos?́k. Preventing premature convergence in a simple eda via global step size setting. In PPSN, pages 549-558, 2008.
  • 22
    • 0001029852 scopus 로고
    • Pseudorandom number assignment in statistically designed simulation and distribution sampling experiments
    • L. W. Schruben and B. H. Margolin. Pseudorandom number assignment in statistically designed simulation and distribution sampling experiments. Journal of the American Statistical Association, 73:504-525, 1978.
    • (1978) Journal of the American Statistical Association , vol.73 , pp. 504-525
    • Schruben, L.W.1    Margolin, B.H.2
  • 23
    • 15544377453 scopus 로고    scopus 로고
    • Drift and scaling in estimation of distribution algorithms
    • J. L. Shapiro. Drift and scaling in estimation of distribution algorithms. Evolutionary Computation, 13(1), 2005.
    • (2005) Evolutionary Computation , vol.13 , Issue.1
    • Shapiro, J.L.1
  • 24
    • 0002522806 scopus 로고    scopus 로고
    • When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?
    • I. Sloan and H. Wózniakowski. When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? Journal of Complexity, 14(1):1-33, 1998.
    • (1998) Journal of Complexity , vol.14 , Issue.1 , pp. 1-33
    • Sloan, I.1    Wózniakowski, H.2
  • 25
    • 72749123300 scopus 로고    scopus 로고
    • O. Teytaud. Conditionning, halting criteria and choosing lambda. In EA07, Tours France, 2007. G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS, G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.6: Optimization.
    • O. Teytaud. Conditionning, halting criteria and choosing lambda. In EA07, Tours France, 2007. G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS, G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.6: Optimization.
  • 26
    • 56449115674 scopus 로고    scopus 로고
    • When does quasi-random work?
    • G. Rudolph, T. Jansen, S. M. Lucas, C. Poloni, and N. Beume, editors, PPSN, of, Springer
    • O. Teytaud. When does quasi-random work?. In G. Rudolph, T. Jansen, S. M. Lucas, C. Poloni, and N. Beume, editors, PPSN, volume 5199 of Lecture Notes in Computer Science, pages 325-336. Springer, 2008.
    • (2008) Lecture Notes in Computer Science , vol.5199 , pp. 325-336
    • Teytaud, O.1
  • 28
    • 0003679019 scopus 로고    scopus 로고
    • Weak Convergence and Empirical Processes, With Applications to Statistics
    • Springer-Verlag New York, Inc
    • A. van der Vaart and J. Wellner. Weak Convergence and Empirical Processes, With Applications to Statistics. Springer Series in Statistics. Springer-Verlag New York, Inc., 1996.
    • (1996) Springer Series in Statistics
    • van der Vaart, A.1    Wellner, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.