메뉴 건너뛰기




Volumn 5199 LNCS, Issue , 2008, Pages 325-336

When does quasi-random work?

Author keywords

Derandomization; Evolution strategies

Indexed keywords

ASYMPTOTIC ANALYSIS; EVOLUTIONARY ALGORITHMS; PROBLEM SOLVING;

EID: 56449115674     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-87700-4_33     Document Type: Conference Paper
Times cited : (12)

References (29)
  • 1
    • 31544438862 scopus 로고    scopus 로고
    • On the discrepancy of the halton sequences
    • Atanassov, E.I.: On the discrepancy of the halton sequences. Math. Balkanica 18(12), 15-32 (2004)
    • (2004) Math. Balkanica , vol.18 , Issue.12 , pp. 15-32
    • Atanassov, E.I.1
  • 2
    • 0040449664 scopus 로고
    • An improved low-discrepancy sequence for multidimensional quasi-monte carlo integration
    • Braaten, E., Weller, G.: An improved low-discrepancy sequence for multidimensional quasi-monte carlo integration. J. Comput. Phys. 33, 249-258 (1979)
    • (1979) J. Comput. Phys , vol.33 , pp. 249-258
    • Braaten, E.1    Weller, G.2
  • 3
    • 0023979638 scopus 로고
    • Algorithm 659: Implementing sobol's quasirandom sequence generator
    • Bratley, P., Fox, B.: Algorithm 659: Implementing sobol's quasirandom sequence generator. ACM Transactions on Mathematical Software 14(1), 88-100 (1988)
    • (1988) ACM Transactions on Mathematical Software , vol.14 , Issue.1 , pp. 88-100
    • Bratley, P.1    Fox, B.2
  • 4
    • 0142156579 scopus 로고    scopus 로고
    • Cervellera, C., Muselli, M.: A deterministic learning approach based on discrepancy. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds.) WIR.N 2003. LNCS, 2859, pp. 53-60. Springer, Heidelberg (2003)
    • Cervellera, C., Muselli, M.: A deterministic learning approach based on discrepancy. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds.) WIR.N 2003. LNCS, vol. 2859, pp. 53-60. Springer, Heidelberg (2003)
  • 5
    • 0000272653 scopus 로고
    • Randomization of number theoretic methods for multiple integration
    • Cranley, R., Patterson, T.N.L.: Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal. 13(6), 904-914 (1976)
    • (1976) SIAM J. Numer. Anal , vol.13 , Issue.6 , pp. 904-914
    • Cranley, R.1    Patterson, T.N.L.2
  • 6
    • 40649093267 scopus 로고
    • Good permutations for extreme discrepancy
    • Faure, H.: Good permutations for extreme discrepancy. J. Number Theory 42, 47-56 (1992)
    • (1992) J. Number Theory , vol.42 , pp. 47-56
    • Faure, H.1
  • 7
    • 33750263250 scopus 로고    scopus 로고
    • Completely derandomized self-adaptation in evolution strategies
    • Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 11(1) (2003)
    • (2003) Evolutionary Computation , vol.11 , Issue.1
    • Hansen, N.1    Ostermeier, A.2
  • 8
    • 0003074506 scopus 로고
    • On double fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters
    • Hardy, G.H.: On double fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters. Quart. J. Mathematics 37, 53-79 (1905)
    • (1905) Quart. J. Mathematics , vol.37 , pp. 53-79
    • Hardy, G.H.1
  • 9
    • 0032345316 scopus 로고    scopus 로고
    • A generalized discrepancy and quadrature error bound
    • Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comp. 67, 299-322 (1998)
    • (1998) Math. Comp , vol.67 , pp. 299-322
    • Hickernell, F.J.1
  • 10
    • 32444445847 scopus 로고    scopus 로고
    • Kimura, S., Matsumura, K.: Genetic algorithms using low-discrepancy sequences. In: GECCO, pp. 1341-1346 (2005)
    • Kimura, S., Matsumura, K.: Genetic algorithms using low-discrepancy sequences. In: GECCO, pp. 1341-1346 (2005)
  • 12
    • 23744506355 scopus 로고    scopus 로고
    • On the scrambled halton sequence
    • Mascagni, M., Chi, H.: On the scrambled halton sequence. Monte Carlo Methods Appl. 10(3), 435-442 (2004)
    • (2004) Monte Carlo Methods Appl , vol.10 , Issue.3 , pp. 435-442
    • Mascagni, M.1    Chi, H.2
  • 13
    • 0001563525 scopus 로고
    • Quasi-random sequences and their discrepancies
    • Morokoff, W.J., Caflish, R.E.: Quasi-random sequences and their discrepancies. SIAM J. Sci. Comput. 15(6), 1251-1279 (1994)
    • (1994) SIAM J. Sci. Comput , vol.15 , Issue.6 , pp. 1251-1279
    • Morokoff, W.J.1    Caflish, R.E.2
  • 15
    • 31544462110 scopus 로고    scopus 로고
    • Parallel quasi-monte carlo methods on a heterogeneous cluster
    • Niederreiter, H, Fang, K.-T, Hickernell, F.J, eds, Springer, Heidelberg
    • Okten, G., Srinivasan, A.: Parallel quasi-monte carlo methods on a heterogeneous cluster. In: Niederreiter, H., Fang, K.-T., Hickernell, F.J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 406-421. Springer, Heidelberg (2002)
    • (2000) Monte Carlo and Quasi-Monte Carlo Methods , pp. 406-421
    • Okten, G.1    Srinivasan, A.2
  • 16
    • 56449099647 scopus 로고    scopus 로고
    • Quasi-Monte Carlo Sampling, A Chapter on QMC for a
    • Owen, A.B.: Quasi-Monte Carlo Sampling, A Chapter on QMC for a SIGGRAPH 2003 course (2003)
    • (2003) SIGGRAPH 2003 course
    • Owen, A.B.1
  • 17
    • 0039264952 scopus 로고
    • A comparative study of pseudo and quasi random sequences for the solution of integral equations
    • Sarkar, P.K., Prasad, M.A.: A comparative study of pseudo and quasi random sequences for the solution of integral equations. J. Computational Physics 68, 66-88 (1978)
    • (1978) J. Computational Physics , vol.68 , pp. 66-88
    • Sarkar, P.K.1    Prasad, M.A.2
  • 18
    • 0002522806 scopus 로고    scopus 로고
    • When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?
    • Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? Journal of Complexity 14(1), 1-33 (1998)
    • (1998) Journal of Complexity , vol.14 , Issue.1 , pp. 1-33
    • Sloan, I.H.1    Woźniakowski, H.2
  • 19
    • 0000473317 scopus 로고
    • On the systematic search in a hypercube
    • Sobol, I.M.: On the systematic search in a hypercube. Siam journal on Numerical Analysis 16(5), 790-793 (1979)
    • (1979) Siam journal on Numerical Analysis , vol.16 , Issue.5 , pp. 790-793
    • Sobol, I.M.1
  • 21
    • 67149116633 scopus 로고    scopus 로고
    • Active learning in regression, with application to stochastic dynamic programming
    • Teytaud, O., Gelly, S., Mary, J.: Active learning in regression, with application to stochastic dynamic programming. In: Proceedings of ICINCO 2007, pp. 47-54 (2007)
    • (2007) Proceedings of ICINCO , pp. 47-54
    • Teytaud, O.1    Gelly, S.2    Mary, J.3
  • 23
    • 0000501691 scopus 로고    scopus 로고
    • Tuffin, B.: On the use of low discrepancy sequences in monte carlo methods (1996)
    • Tuffin, B.: On the use of low discrepancy sequences in monte carlo methods (1996)
  • 24
    • 31544474075 scopus 로고    scopus 로고
    • A new permutation choice in halton sequences
    • Tuffin, B.: A new permutation choice in halton sequences. Monte Carlo and Quasi-Monte Carlo 127, 427-435 (1997)
    • (1997) Monte Carlo and Quasi-Monte Carlo , vol.127 , pp. 427-435
    • Tuffin, B.1
  • 26
    • 31544459496 scopus 로고    scopus 로고
    • Good permutations for deterministic scrambled halton sequences in terms of 12-discrepancy
    • Vandewoestyne, B., Cools, R.: Good permutations for deterministic scrambled halton sequences in terms of 12-discrepancy. Computational and Applied Mathematics 189(1,2), 341-361 (2006)
    • (2006) Computational and Applied Mathematics 189(1,2) , pp. 341-361
    • Vandewoestyne, B.1    Cools, R.2
  • 29
    • 0242665968 scopus 로고
    • Computational investigations of low-discrepancy point sets ii
    • Niederreiter, H, Shiue, P.J.-S, eds, Springer, Berlin
    • Warnock, T.T.: Computational investigations of low-discrepancy point sets ii. In: Niederreiter, H., Shiue, P.J.-S. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Springer, Berlin (1995)
    • (1995) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
    • Warnock, T.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.