메뉴 건너뛰기




Volumn , Issue , 2009, Pages 57-63

Particle swarm optimization based multi-prototype ensembles

Author keywords

Classification; Ensemble; Particle swarm optimization

Indexed keywords

CLASSIFICATION; DIVERSE ENSEMBLES; ENSEMBLE CLASSIFIERS; ERROR RATE; FITNESS FUNCTIONS; MAJORITY VOTING MECHANISM; NEAREST PROTOTYPE; NEW MEMBERS; PENALTY TERM; SIMULATION EXPERIMENTS;

EID: 72749106588     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1569901.1569910     Document Type: Conference Paper
Times cited : (6)

References (36)
  • 1
    • 72749123622 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • UCI repository of machine learning databases. http://archive.ics.uci.edu/ ml/datasets.html.
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 1942485305 scopus 로고    scopus 로고
    • The use of the ambiguity decomposition in neural network ensemble learning methods
    • T. Fawcett, et al, editors
    • G. Brown and J. Wyatt. The use of the ambiguity decomposition in neural network ensemble learning methods. In T. Fawcett, et al., editors, ICML'03, pages 67-74, 2003.
    • (2003) ICML'03 , pp. 67-74
    • Brown, G.1    Wyatt, J.2
  • 6
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: a survey and categorisation. Information Fusion, 6(1):5 - 20, 2005.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 7
    • 0003998387 scopus 로고
    • Statistical efficiency in the linear combination of forecasts
    • D. W. Bunn. Statistical efficiency in the linear combination of forecasts. International Journal of Forecasting, 1(2):151-163, 1985.
    • (1985) International Journal of Forecasting , vol.1 , Issue.2 , pp. 151-163
    • Bunn, D.W.1
  • 8
    • 84984507876 scopus 로고
    • Forecasting with more than one model
    • D. W. Bunn. Forecasting with more than one model. Journal of Forecasting, 8(3):161-166, 1989.
    • (1989) Journal of Forecasting , vol.8 , Issue.3 , pp. 161-166
    • Bunn, D.W.1
  • 10
    • 34047264335 scopus 로고    scopus 로고
    • Facing classification problems with particle swarm optimization
    • I. De Falco, A. Della Cioppa, and E. Tarantino. Facing classification problems with particle swarm optimization. Appl. Soft Comput., 7(3):652-658, 2007.
    • (2007) Appl. Soft Comput , vol.7 , Issue.3 , pp. 652-658
    • De Falco, I.1    Della Cioppa, A.2    Tarantino, E.3
  • 11
    • 3142672346 scopus 로고    scopus 로고
    • Evolutionary design of nearest prototype classifiers
    • F. Fernández and P. Isasi. Evolutionary design of nearest prototype classifiers. Journal of Heuristics, 10(4):431-454, 2004.
    • (2004) Journal of Heuristics , vol.10 , Issue.4 , pp. 431-454
    • Fernández, F.1    Isasi, P.2
  • 15
    • 0031171679 scopus 로고    scopus 로고
    • Optimal linear combinations of neural networks
    • S. Hashem, B. Schmeiser, and Y. Yih. Optimal linear combinations of neural networks. Neural Networks, 10:599-614, 1997.
    • (1997) Neural Networks , vol.10 , pp. 599-614
    • Hashem, S.1    Schmeiser, B.2    Yih, Y.3
  • 16
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T. K. Ho. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell., 20(8):832-844, 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 17
    • 0000746883 scopus 로고
    • Escaping brittleness: The possibilities of general purpose learning algorithms applied to parallel rule-based systems
    • Morgan Kauffman
    • J. Holland. Escaping brittleness: the possibilities of general purpose learning algorithms applied to parallel rule-based systems. In Machine Learning: An Artificial Intelligence Approach, pages 129-138. Morgan Kauffman, 1986.
    • (1986) Machine Learning: An Artificial Intelligence Approach , pp. 129-138
    • Holland, J.1
  • 22
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • IJCAI
    • R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In International Joint Conference on Artificial Intelligence (IJCAI), pages 1137-1145, 1995.
    • (1995) International Joint Conference on Artificial Intelligence , pp. 1137-1145
    • Kohavi, R.1
  • 25
    • 0031238275 scopus 로고    scopus 로고
    • Application of majority voting to pattern recognition: An analysis of its behavior and performance
    • L. Lam and S. Suen. Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Transactions on Systems, Man and Cybernetics, Part A, 27(5):553-568, 1997.
    • (1997) IEEE Transactions on Systems, Man and Cybernetics, Part A , vol.27 , Issue.5 , pp. 553-568
    • Lam, L.1    Suen, S.2
  • 26
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural Networks, 12:1399-1404, 1999.
    • (1999) Neural Networks , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 27
    • 84901421400 scopus 로고    scopus 로고
    • The swarm and queen: Towards a deterministic and adaptive particle swarm optimization
    • C. Maurice. The swarm and queen: towards a deterministic and adaptive particle swarm optimization. In IEEE Congress on Evolutionary Computation, volume 2, pages 1951-1957, 1999.
    • (1999) IEEE Congress on Evolutionary Computation , vol.2 , pp. 1951-1957
    • Maurice, C.1
  • 28
    • 35048814991 scopus 로고    scopus 로고
    • Optimizing classification ensembles via a genetic algorithm for a web-based educational system
    • B. Minaei-Bidgoli, G. Kortemeyer, and W. F. Punch. Optimizing classification ensembles via a genetic algorithm for a web-based educational system. In Lecture Notes in Computer Science, volume 3138, pages 397-406, 2004.
    • (2004) Lecture Notes in Computer Science , vol.3138 , pp. 397-406
    • Minaei-Bidgoli, B.1    Kortemeyer, G.2    Punch, W.F.3
  • 30
    • 0012987265 scopus 로고    scopus 로고
    • A genetic algorithm approach for creating neural network ensembles
    • Springer-Verlag
    • D. W. Opitz and J. W. Shavlik. A genetic algorithm approach for creating neural network ensembles. In Combining Artificial Neural Nets, pages 79-99. Springer-Verlag, 1999.
    • (1999) Combining Artificial Neural Nets , pp. 79-99
    • Opitz, D.W.1    Shavlik, J.W.2
  • 31
    • 0030367578 scopus 로고    scopus 로고
    • Ensemble learning using decorrelated neural networks
    • B. E. Rosen. Ensemble learning using decorrelated neural networks. Connection Science, 8:373-384, 1996.
    • (1996) Connection Science , vol.8 , pp. 373-384
    • Rosen, B.E.1
  • 34
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • L. Xu, A. Krzyzak, and C. Suen. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on Systems, Man and Cybernetics, 22(3):418-435, 1992.
    • (1992) IEEE Transactions on Systems, Man and Cybernetics , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.3
  • 36
    • 84880868490 scopus 로고    scopus 로고
    • Genetic algorithm based selective neural network ensemble
    • Z.-H. Zhou, J.-X. Wu, Y. Jiang, and S.-F. Chen. Genetic algorithm based selective neural network ensemble. In Proc. of IJCAI, pages 797-802, 2001.
    • (2001) Proc. of IJCAI , pp. 797-802
    • Zhou, Z.-H.1    Wu, J.-X.2    Jiang, Y.3    Chen, S.-F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.