메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1782-1789

Ensemble learning for free with evolutionary algorithms?

Author keywords

Ensemble learning; Evolutionary computation

Indexed keywords

FUNCTIONS; LEARNING SYSTEMS; PROBLEM SOLVING;

EID: 34548090779     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1276958.1277317     Document Type: Conference Paper
Times cited : (28)

References (25)
  • 1
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman. Arcing classifiers. Annals of Statistics, 26(3):801-845, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-845
    • Breiman, L.1
  • 2
    • 32544450795 scopus 로고    scopus 로고
    • Ensemble learning using multi-objective evolutionary algorithms
    • A. Chandra and X. Yao. Ensemble learning using multi-objective evolutionary algorithms. J. of Mathematical Modelling and Algorithms, 5(4):417-425, 2006.
    • (2006) J. of Mathematical Modelling and Algorithms , vol.5 , Issue.4 , pp. 417-425
    • Chandra, A.1    Yao, X.2
  • 3
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • A. Chandra and X. Yao. Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing, 69:686-700, 2006.
    • (2006) Neurocomputing , vol.69 , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 4
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10:1895-1923, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 9
    • 33746185763 scopus 로고    scopus 로고
    • Genericity in evolutionary computation software tools: Principles and case-study
    • C. Gagné and M. Parizeau. Genericity in evolutionary computation software tools: Principles and case-study. Int. J. on Artificial Intelligence Tools, 15(2):173-194, 2006.
    • (2006) Int. J. on Artificial Intelligence Tools , vol.15 , Issue.2 , pp. 173-194
    • Gagné, C.1    Parizeau, M.2
  • 12
    • 33745891586 scopus 로고    scopus 로고
    • I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Springer-Verlag
    • I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors. Feature Extraction: Foundations And Applications. Springer-Verlag, 2006.
    • (2006) Feature Extraction: Foundations And Applications
  • 13
    • 0001118093 scopus 로고
    • Co-evolving parasites improve simulated evolution as an optimization procedure
    • W. D. Hillis. Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D, 42:228-234, 1990.
    • (1990) Physica D , vol.42 , pp. 228-234
    • Hillis, W.D.1
  • 14
    • 0000746883 scopus 로고
    • Escaping brittleness: The possibilities of general-purpose learning algorithms applied to parallel rule-based systems
    • Morgan Kaufmann
    • J. Holland. Escaping brittleness: The possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In Machine Learning, An Artificial Intelligence Approach, volume 2, pages 593-623. Morgan Kaufmann, 1986.
    • (1986) Machine Learning, An Artificial Intelligence Approach , vol.2 , pp. 593-623
    • Holland, J.1
  • 17
    • 84927958012 scopus 로고    scopus 로고
    • Genetic programming, ensemble methods, and the bias/variance tradeoff -introductory investigations
    • M. Keijzer and V. Babovic. Genetic programming, ensemble methods, and the bias/variance tradeoff -introductory investigations. In Proc. of the European Conf. on Genetic Programming (EuroGP'00), pages 76-90, 2000.
    • (2000) Proc. of the European Conf. on Genetic Programming (EuroGP'00) , pp. 76-90
    • Keijzer, M.1    Babovic, V.2
  • 18
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary ensembles with negative correlation learning
    • Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation learning. IEEE Trans, on Evolutionary Computation, 4(4):380-387, 2000.
    • (2000) IEEE Trans, on Evolutionary Computation , vol.4 , Issue.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2    Higuchi, T.3
  • 20
    • 85066373031 scopus 로고    scopus 로고
    • J. Paredis. Coevolving cellular automata: Be aware of the Red Queen! In Proc. of the Int. Conf. on Genetic Algorithms (ICGA '91), pages 393-400, 1997.
    • J. Paredis. Coevolving cellular automata: Be aware of the Red Queen! In Proc. of the Int. Conf. on Genetic Algorithms (ICGA '91), pages 393-400, 1997.
  • 21
    • 84959044849 scopus 로고    scopus 로고
    • Applying Boosting techniques to genetic programming
    • Artificial Evolution 2001, of, Springer Verlag
    • G. Paris, D. Robilliard, and C. Fonlupt. Applying Boosting techniques to genetic programming. In Artificial Evolution 2001, volume 2310 of LNCS, pages 267-278. Springer Verlag, 2001.
    • (2001) LNCS , vol.2310 , pp. 267-278
    • Paris, G.1    Robilliard, D.2    Fonlupt, C.3
  • 22
    • 47849088969 scopus 로고    scopus 로고
    • The dynamics of AdaBoost: Cyclic behavior and convergence of margins
    • C Rudin, I. Daubechies, and R. E. Schapire. The dynamics of AdaBoost: Cyclic behavior and convergence of margins. J. of Machine Learning Research, 5:1557-1595, 2004.
    • (2004) J. of Machine Learning Research , vol.5 , pp. 1557-1595
    • Rudin, C.1    Daubechies, I.2    Schapire, R.E.3
  • 23
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5):1651-1686, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Bartlett, P.3    Lee, W.4
  • 24
    • 21044433766 scopus 로고    scopus 로고
    • Training genetic programming on half a million patterns: An example from anomaly detection
    • D. Song, M. I. Heywood, and A. N. Zincir-Heywood. Training genetic programming on half a million patterns: an example from anomaly detection. IEEE Trans, on Evolutionary Computation, 9(3):225-239, 2005.
    • (2005) IEEE Trans, on Evolutionary Computation , vol.9 , Issue.3 , pp. 225-239
    • Song, D.1    Heywood, M.I.2    Zincir-Heywood, A.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.