메뉴 건너뛰기




Volumn , Issue , 2009, Pages 413-420

Intelligent bias of network structures in the hierarchical BOA

Author keywords

Bayesian optimization algorithm; Efficiency enhancement; Estimation of distribution algorithms; Hierarchical BOA; Learning from experience; Model complexity

Indexed keywords

BAYESIAN NETWORK MODELS; BAYESIAN OPTIMIZATION ALGORITHMS; CANDIDATE SOLUTION; ESTIMATION OF DISTRIBUTION ALGORITHMS; GLOBAL OPTIMUM; HIERARCHICAL BAYESIAN; HIGH PROBABILITY; MODEL COMPLEXITY; NETWORK STRUCTURES; PROBABILISTIC MODELS; ROADMAP; STOCHASTIC OPTIMIZATION TECHNIQUES; UNIFORM DISTRIBUTION;

EID: 72749090826     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1569901.1569959     Document Type: Conference Paper
Times cited : (18)

References (30)
  • 1
    • 0002589531 scopus 로고
    • An empirical study of bit vector function optimization
    • D. H. Ackley. An empirical study of bit vector function optimization. Genetic Algorithms and Simulated Annealing, pages 170-204, 1987.
    • (1987) Genetic Algorithms and Simulated Annealing , pp. 170-204
    • Ackley, D.H.1
  • 2
    • 0003984832 scopus 로고
    • Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
    • Tech. Rep. No. CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA
    • S. Baluja. Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Tech. Rep. No. CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA, 1994.
    • (1994)
    • Baluja, S.1
  • 3
    • 34548089107 scopus 로고    scopus 로고
    • Incorporating a priori knowledge in probabilistic-model based optimization
    • M. Pelikan, K. Sastry, and E. Cantú-Paz, editors, Springer
    • S. Baluja. Incorporating a priori knowledge in probabilistic-model based optimization. In M. Pelikan, K. Sastry, and E. Cantú-Paz, editors, Scalable optimization via probabilistic modeling: From algorithms to applications, pages 205-219. Springer, 2006.
    • (2006) Scalable optimization via probabilistic modeling: From algorithms to applications , pp. 205-219
    • Baluja, S.1
  • 4
    • 0011843617 scopus 로고    scopus 로고
    • A Bayesian approach to learning Bayesian networks with local structure
    • Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA
    • D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning Bayesian networks with local structure. Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA, 1997.
    • (1997)
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 7
    • 0000220520 scopus 로고    scopus 로고
    • Learning Bayesian networks with local structure
    • M. I. Jordan, editor, MIT Press
    • N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure. In M. I. Jordan, editor, Graphical models, pages 421-459. MIT Press, 1999.
    • (1999) Graphical models , pp. 421-459
    • Friedman, N.1    Goldszmidt, M.2
  • 11
    • 0003846045 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA
    • D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA, 1994.
    • (1994)
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 12
    • 0000086731 scopus 로고
    • Influence diagrams
    • R. A. Howard and J. E. Matheson, editors, Strategic Decisions Group, Menlo Park, CA
    • R. A. Howard and J. E. Matheson. Influence diagrams. In R. A. Howard and J. E. Matheson, editors, Readings on the principles and applications of decision analysis, volume II, pages 721-762. Strategic Decisions Group, Menlo Park, CA, 1981.
    • (1981) Readings on the principles and applications of decision analysis , vol.2 , pp. 721-762
    • Howard, R.A.1    Matheson, J.E.2
  • 15
    • 0036859017 scopus 로고    scopus 로고
    • Evolutionary optimization and the estimation of search distributions with applications to graph bipartitioning
    • H. Mühlenbein and T. Mahnig. Evolutionary optimization and the estimation of search distributions with applications to graph bipartitioning. International Journal on Approximate Reasoning, 31(3):157-192, 2002.
    • (2002) International Journal on Approximate Reasoning , vol.31 , Issue.3 , pp. 157-192
    • Mühlenbein, H.1    Mahnig, T.2
  • 16
    • 72749095694 scopus 로고    scopus 로고
    • Schemata, distributions and graphical models in evolutionary optimization
    • Submitted for publication
    • H. Mühlenbein, T. Mahnig, and A. O. Rodriguez. Schemata, distributions and graphical models in evolutionary optimization. Submitted for publication, 1998.
    • (1998)
    • Mühlenbein, H.1    Mahnig, T.2    Rodriguez, A.O.3
  • 25
    • 38049092589 scopus 로고    scopus 로고
    • R. Santana, P. Larrañaga, and J. A. Lozano. The role of a priori information in the minimization of contact potentials by means of estimation of distribution algorithms. In E. Marchiori, J. H. Moore, and J. C. Rajapakse, editors, Proc. of the 5th European Conf. on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, 4447 of Lecture Notes in Computer Science, pages 247-257. Springer, 2007.
    • R. Santana, P. Larrañaga, and J. A. Lozano. The role of a priori information in the minimization of contact potentials by means of estimation of distribution algorithms. In E. Marchiori, J. H. Moore, and J. C. Rajapakse, editors, Proc. of the 5th European Conf. on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, volume 4447 of Lecture Notes in Computer Science, pages 247-257. Springer, 2007.
  • 26
    • 72749108801 scopus 로고    scopus 로고
    • K. Sastry. Efficient atomic cluster optimization using a hybrid extended compact genetic algorithm with seeded population. IlliGAL Report No. 2001018, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, 2001.
    • K. Sastry. Efficient atomic cluster optimization using a hybrid extended compact genetic algorithm with seeded population. IlliGAL Report No. 2001018, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, 2001.
  • 27
    • 4344572502 scopus 로고    scopus 로고
    • Master's thesis, University of Illinois at Urbana-Champaign, Department of General Engineering, Urbana, IL
    • K. Sastry. Evaluation-relaxation schemes for genetic and evolutionary algorithms. Master's thesis, University of Illinois at Urbana-Champaign, Department of General Engineering, Urbana, IL, 2001.
    • (2001) Evaluation-relaxation schemes for genetic and evolutionary algorithms
    • Sastry, K.1
  • 28
    • 72749089107 scopus 로고    scopus 로고
    • A problem-knowledge based evolutionary algorithm KBOA for hypergraph partitioning, 2000. Personal communication
    • J. Schwarz and J. Ocenasek. A problem-knowledge based evolutionary algorithm KBOA for hypergraph partitioning, 2000. Personal communication.
    • Schwarz, J.1    Ocenasek, J.2
  • 29
    • 33750280881 scopus 로고    scopus 로고
    • University of Köln, Germany
    • Spin Glass Ground State Server. http://www.informatik. uni-koeln.de/ls\-juenger/research/sgs/sgs.html, 2004. University of Köln, Germany.
    • (2004) Spin Glass Ground State Server
  • 30
    • 0033258368 scopus 로고    scopus 로고
    • Scalability problems of simple genetic algorithms
    • D. Thierens. Scalability problems of simple genetic algorithms. Evolutionary Computation, 7(4):331-352, 1999.
    • (1999) Evolutionary Computation , vol.7 , Issue.4 , pp. 331-352
    • Thierens, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.