메뉴 건너뛰기




Volumn , Issue , 2008, Pages 431-438

From mating pool distributions to model overfitting

Author keywords

Bayesian networks; Bayesian optimization algorithm; Estimation of distribution algorithms; Overfitting; Selection

Indexed keywords

GENETIC ALGORITHMS;

EID: 57349083140     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1389095.1389174     Document Type: Conference Paper
Times cited : (17)

References (19)
  • 2
    • 0004181160 scopus 로고    scopus 로고
    • A comparison of selection schemes used in genetic algorithms
    • T. Blickle and L. Thiele. A comparison of selection schemes used in genetic algorithms. Evolutionary Computation, 4(4):311-347, 1997.
    • (1997) Evolutionary Computation , vol.4 , Issue.4 , pp. 311-347
    • Blickle, T.1    Thiele, L.2
  • 3
    • 0003766238 scopus 로고
    • PhD thesis, University of Alberta, Edmonton, Canada, Unpublished doctoral dissertation
    • A. Brindle. Genetic Algorithms for Function Optimization. PhD thesis, University of Alberta, Edmonton, Canada, 1981. Unpublished doctoral dissertation.
    • (1981) Genetic Algorithms for Function Optimization
    • Brindle, A.1
  • 4
    • 0011843617 scopus 로고    scopus 로고
    • A Bayesian approach to learning Bayesian networks with local structure
    • Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA
    • D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning Bayesian networks with local structure. Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA.
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 5
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. H. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.H.2
  • 7
    • 0000220520 scopus 로고    scopus 로고
    • Learning bayesian networks with local structure
    • N. Friedman and M. Goldszmidt. Learning bayesian networks with local structure. Graphical Models, pages 421-459, 1999.
    • (1999) Graphical Models , pp. 421-459
    • Friedman, N.1    Goldszmidt, M.2
  • 8
    • 0000904077 scopus 로고
    • Messy genetic algorithms: Motivation, analysis, and first results
    • D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems, 3(5):493-530, 1989.
    • (1989) Complex Systems , vol.3 , Issue.5 , pp. 493-530
    • Goldberg, D.E.1    Korb, B.2    Deb, K.3
  • 10
    • 0003846045 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA
    • D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA, 1994.
    • (1994)
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 13
    • 0003140039 scopus 로고
    • Predictive models for the breeder genetic algorithm: I. Continuous parameter optimization
    • H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder genetic algorithm: I. Continuous parameter optimization. Evolutionary Computation, 1(1):25-49, 1993.
    • (1993) Evolutionary Computation , vol.1 , Issue.1 , pp. 25-49
    • Mühlenbein, H.1    Schlierkamp-Voosen, D.2
  • 18
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461-464, 1978.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.