메뉴 건너뛰기




Volumn , Issue , 2009, Pages 397-403

Difficulty of linkage learning in estimation of distribution algorithms

Author keywords

Estimation of distribution algorithms; Genetic algorithms; Linkage learning; Parity function

Indexed keywords

CONVERGENCE MODEL; EMPIRICAL FINDINGS; ESTIMATION OF DISTRIBUTION ALGORITHMS; INDEPENDENT FUNCTIONS; LEARNING MECHANISM; LINKAGE LEARNING; PARITY FUNCTIONS; POLYNOMIAL NUMBER; PROBLEM SIZE; TRAP FUNCTIONS;

EID: 72749088460     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1569901.1569957     Document Type: Conference Paper
Times cited : (12)

References (24)
  • 2
    • 0003984832 scopus 로고
    • Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
    • Technical report, Carnegie Mellon University, Pittsburgh, PA, USA
    • S. Baluja. Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical report, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.
    • (1994)
    • Baluja, S.1
  • 3
    • 78049265488 scopus 로고    scopus 로고
    • Mimic: Finding optima by estimating probability densities
    • M. J. M.C. Mozer and T. Petsche, editors, The MIT Press
    • J. S. D. Bonet, C. L. Isbell, and P. Viola. Mimic: Finding optima by estimating probability densities. In M. J. M.C. Mozer and T. Petsche, editors, Advances in Neural Information Processing Systems, volume 9, page 424. The MIT Press, 1997.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 424
    • Bonet, J.S.D.1    Isbell, C.L.2    Viola, P.3
  • 6
    • 51849109389 scopus 로고    scopus 로고
    • A clustering-based approach for linkage learning applied to multimodal optimization
    • L. Emmendorfer and A. Pozo. A clustering-based approach for linkage learning applied to multimodal optimization. Linkage in Evolutionary Computation, pages 225-248, 2008.
    • (2008) Linkage in Evolutionary Computation , pp. 225-248
    • Emmendorfer, L.1    Pozo, A.2
  • 8
    • 0027701744 scopus 로고
    • What makes a problem hard for a genetic algorithm? some anomalous results and their explanation
    • S. Forrest and M. Mitchell. What makes a problem hard for a genetic algorithm? some anomalous results and their explanation. In Machine Learning, pages 285-319, 1993.
    • (1993) Machine Learning , pp. 285-319
    • Forrest, S.1    Mitchell, M.2
  • 9
    • 0000473160 scopus 로고
    • Genetic algorithms and walsh functions: Part i, a gentle introduction
    • D. E. Goldberg. Genetic algorithms and walsh functions: Part i, a gentle introduction. In Complex Systems, volume 3, pages 129 - 152, 1989.
    • (1989) Complex Systems , vol.3 , pp. 129-152
    • Goldberg, D.E.1
  • 11
    • 0000510934 scopus 로고
    • Genetic algorithms, noise, and the sizing of populations
    • D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms, noise, and the sizing of populations. In Complex Systems, volume 6, pages 333 - 362, 1992.
    • (1992) Complex Systems , vol.6 , pp. 333-362
    • Goldberg, D.E.1    Deb, K.2    Clark, J.H.3
  • 12
    • 72749117561 scopus 로고    scopus 로고
    • G. Harik. Linkage learning via probabilistic modeling in the ecga. Technical report, IlliGAL, University of Illinois at Urbana-Champaign, 1999.
    • G. Harik. Linkage learning via probabilistic modeling in the ecga. Technical report, IlliGAL, University of Illinois at Urbana-Champaign, 1999.
  • 13
    • 0033185794 scopus 로고    scopus 로고
    • The gambler's ruin problem, genetic algorithms, and the sizing of populations
    • G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller. The gambler's ruin problem, genetic algorithms, and the sizing of populations. Evolutionary Computation, 7(3):231-253, 1999.
    • (1999) Evolutionary Computation , vol.7 , Issue.3 , pp. 231-253
    • Harik, G.1    Cantú-Paz, E.2    Goldberg, D.E.3    Miller, B.L.4
  • 20
    • 0036180213 scopus 로고    scopus 로고
    • A survey of optimization by building and using probabilistic models
    • M. Pelikan, D. E. Goldberg, and F. G. Lobo. A survey of optimization by building and using probabilistic models. Comput. Optim. Appl., 21(1):5-20, 2002.
    • (2002) Comput. Optim. Appl , vol.21 , Issue.1 , pp. 5-20
    • Pelikan, M.1    Goldberg, D.E.2    Lobo, F.G.3
  • 22
    • 27144536098 scopus 로고    scopus 로고
    • Modeling dependencies of loci with string classification according to fitness differences
    • M. Tsuji, M. Munetomo, and K. Akama. Modeling dependencies of loci with string classification according to fitness differences. In Genetic and Evolutionary Computation (GECCO 2004), pages 246-257, 2004.
    • (2004) Genetic and Evolutionary Computation (GECCO 2004) , pp. 246-257
    • Tsuji, M.1    Munetomo, M.2    Akama, K.3
  • 24
    • 72749088616 scopus 로고    scopus 로고
    • T.-L. Yu, D. E. Goldberg, A. Yassine, and Y.-P. Chen. A genetic algorithm design inspired by organization theory: a pilot study of a dependency structure matrix driven genetic algorithm. Technical report, IlliGAL, University of Illinois at Urbana-Champaign, Urbana, IL, 2003.
    • T.-L. Yu, D. E. Goldberg, A. Yassine, and Y.-P. Chen. A genetic algorithm design inspired by organization theory: a pilot study of a dependency structure matrix driven genetic algorithm. Technical report, IlliGAL, University of Illinois at Urbana-Champaign, Urbana, IL, 2003.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.