메뉴 건너뛰기




Volumn 157, Issue , 2008, Pages 225-248

A clustering-based approach for linkage learning applied to multimodal optimization

Author keywords

[No Author keywords available]

Indexed keywords


EID: 51849109389     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-85068-7_10     Document Type: Article
Times cited : (3)

References (22)
  • 2
    • 0003679582 scopus 로고
    • Doctoral dissertation, University of Illinois at Urbana-Champaign, Urbana, USA
    • Mahfoud, S.W.: Niching methods for genetic algorithms, Doctoral dissertation, University of Illinois at Urbana-Champaign, Urbana, USA (1995)
    • (1995) Niching methods for genetic algorithms
    • Mahfoud, S.W.1
  • 3
    • 0011801707 scopus 로고    scopus 로고
    • Genetic algorithms, clustering, and the breaking of symmetry
    • Pelikan, M., Goldberg, D.E.: Genetic algorithms, clustering, and the breaking of symmetry. In: Parallel Problem Solving from Nature, vol. VI, pp. 385-394 (2000)
    • (2000) Parallel Problem Solving from Nature , vol.6 , pp. 385-394
    • Pelikan, M.1    Goldberg, D.E.2
  • 5
    • 51849140313 scopus 로고    scopus 로고
    • An empirical evaluation of linkage learning strategies for multimodal optimization
    • CEC, pp
    • Emmendorfer, L., Pozo, A.: An empirical evaluation of linkage learning strategies for multimodal optimization. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 326-333 (2007)
    • (2007) Proceedings of IEEE Congress on Evolutionary Computation , pp. 326-333
    • Emmendorfer, L.1    Pozo, A.2
  • 10
    • 15544385794 scopus 로고    scopus 로고
    • Globally multimodal problem optimization via an estimation of distribution algorithm based on unsupervised learning of bayesian networks
    • Peña, J.M., Lozano, J.A., Larrañaga, P.: Globally multimodal problem optimization via an estimation of distribution algorithm based on unsupervised learning of bayesian networks. Evolutionary Compututation 13(1), 43-66 (2005)
    • (2005) Evolutionary Compututation , vol.13 , Issue.1 , pp. 43-66
    • Peña, J.M.1    Lozano, J.A.2    Larrañaga, P.3
  • 11
    • 0000904077 scopus 로고
    • Messy genetic algorithms: Motivation, analysis and first results
    • Goldberg, D.E., Korb, G., Deb, G.: Messy genetic algorithms: Motivation, analysis and first results. Complex Systems 3, 493-530 (1989)
    • (1989) Complex Systems , vol.3 , pp. 493-530
    • Goldberg, D.E.1    Korb, G.2    Deb, G.3
  • 18
    • 0004637582 scopus 로고
    • Evolutionary speciation using minimal representation size clustering
    • Hocaoglu, C., Sanderson, A.C.: Evolutionary speciation using minimal representation size clustering. In: Evolutionary Programming, pp. 187-203 (1995)
    • (1995) Evolutionary Programming , pp. 187-203
    • Hocaoglu, C.1    Sanderson, A.C.2
  • 19
    • 0032377357 scopus 로고    scopus 로고
    • Approximate is better than exact for interval estimation of binomial proportions
    • Agresti, A., Coull, B.: Approximate is better than exact for interval estimation of binomial proportions. The American Statistician 58, 119-126 (1998)
    • (1998) The American Statistician , vol.58 , pp. 119-126
    • Agresti, A.1    Coull, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.