메뉴 건너뛰기




Volumn 80, Issue 16, 2009, Pages

Fermionic multiscale entanglement renormalization ansatz

Author keywords

[No Author keywords available]

Indexed keywords


EID: 72649091684     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.80.165129     Document Type: Article
Times cited : (198)

References (45)
  • 1
    • 27144455719 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.94.170201
    • M. Troyer and U.-J. Wiese, Phys. Rev. Lett. 94, 170201 (2005). 10.1103/PhysRevLett.94.170201
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 170201
    • Troyer, M.1    Wiese, U.-J.2
  • 4
  • 8
    • 72649100208 scopus 로고    scopus 로고
    • arXiv:cond-mat/9811170 (unpublished).
    • G. Sierra and M. A. Martin-Delgado, arXiv:cond-mat/9811170 (unpublished).
    • Sierra, G.1    Martin-Delgado, M.A.2
  • 11
    • 72649095404 scopus 로고    scopus 로고
    • arXiv:cond-mat/0407066 (unpublished).
    • F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066 (unpublished).
    • Verstraete, F.1    Cirac, J.I.2
  • 14
    • 52149091646 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.101.110501
    • G. Vidal, Phys. Rev. Lett. 101, 110501 (2008). 10.1103/PhysRevLett.101. 110501
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 110501
    • Vidal, G.1
  • 17
    • 36549074539 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.99.220405
    • G. Vidal, Phys. Rev. Lett. 99, 220405 (2007). 10.1103/PhysRevLett.99. 220405
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 220405
    • Vidal, G.1
  • 18
    • 65549170919 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.79.144108
    • G. Evenbly and G. Vidal, Phys. Rev. B 79, 144108 (2009). 10.1103/PhysRevB.79.144108
    • (2009) Phys. Rev. B , vol.79 , pp. 144108
    • Evenbly, G.1    Vidal, G.2
  • 21
    • 72649092154 scopus 로고    scopus 로고
    • arXiv:0710.0692 (unpublished).
    • G. Evenbly and G. Vidal, arXiv:0710.0692 (unpublished).
    • Evenbly, G.1    Vidal, G.2
  • 24
    • 65549157856 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.102.180406
    • G. Evenbly and G. Vidal, Phys. Rev. Lett. 102, 180406 (2009). 10.1103/PhysRevLett.102.180406
    • (2009) Phys. Rev. Lett. , vol.102 , pp. 180406
    • Evenbly, G.1    Vidal, G.2
  • 25
    • 72649092744 scopus 로고    scopus 로고
    • arXiv:0904.3383 (unpublished).
    • G. Evenbly and G. Vidal, arXiv:0904.3383 (unpublished).
    • Evenbly, G.1    Vidal, G.2
  • 26
    • 40849088480 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.100.070404
    • M. Aguado and G. Vidal, Phys. Rev. Lett. 100, 070404 (2008). 10.1103/PhysRevLett.100.070404
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 070404
    • Aguado, M.1    Vidal, G.2
  • 31
    • 72649095541 scopus 로고    scopus 로고
    • Note that the local dimension d of the original lattice, in which the Hamiltonian is defined, is usually smaller than the local dimension χ of a coarse-grained site. In this case the computational cost to compute ascending/descending superoperators and environments for the first layer of the MERA is smaller than for the higher layers.
    • Note that the local dimension d of the original lattice, in which the Hamiltonian is defined, is usually smaller than the local dimension χ of a coarse-grained site. In this case the computational cost to compute ascending/descending superoperators and environments for the first layer of the MERA is smaller than for the higher layers.
  • 33
    • 72649085657 scopus 로고    scopus 로고
    • Note that in some cases a fermionic swap gate can only be absorbed in a later stage of the contraction, i.e., not necessarily at the beginning.
    • Note that in some cases a fermionic swap gate can only be absorbed in a later stage of the contraction, i.e., not necessarily at the beginning.
  • 37
    • 72649105212 scopus 로고    scopus 로고
    • In this example we study the noninteracting case in order to be able to compare with the exact result. (No exact results are available for the interacting case for large systems). The energy as a function of χ behaves similarly in the interacting case as in the noninteracting case, but with a slower convergence for intermediate interaction strengths V∼1 where the amount of entanglement in the system is large (cf. Fig.).
    • In this example we study the noninteracting case in order to be able to compare with the exact result. (No exact results are available for the interacting case for large systems). The energy as a function of χ behaves similarly in the interacting case as in the noninteracting case, but with a slower convergence for intermediate interaction strengths V∼1 where the amount of entanglement in the system is large (cf. Fig.).
  • 38
    • 32644460099 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.96.010404
    • M. M. Wolf, Phys. Rev. Lett. 96, 010404 (2006). 10.1103/PhysRevLett.96. 010404
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 010404
    • Wolf, M.M.1
  • 39
    • 33644887514 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.96.100503
    • D. Gioev and I. Klich, Phys. Rev. Lett. 96, 100503 (2006). 10.1103/PhysRevLett.96.100503
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 100503
    • Gioev, D.1    Klich, I.2
  • 42
    • 36649005167 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.99.220602
    • A. W. Sandvik and G. Vidal, Phys. Rev. Lett. 99, 220602 (2007). 10.1103/PhysRevLett.99.220602
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 220602
    • Sandvik, A.W.1    Vidal, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.