-
1
-
-
4243747802
-
-
10.1103/PhysRevLett.49.957;
-
F. Wilczek, Phys. Rev. Lett. 49, 957 (1982) 10.1103/PhysRevLett.49.957
-
(1982)
Phys. Rev. Lett.
, vol.49
, pp. 957
-
-
Wilczek, F.1
-
4
-
-
33751253465
-
-
10.1103/PhysRevLett.97.216404;
-
E.-A. Kim, Phys. Rev. Lett. 97, 216404 (2006) 10.1103/PhysRevLett.97. 216404
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 216404
-
-
Kim, E.-A.1
-
6
-
-
1542763507
-
-
10.1080/00018739500101566;
-
X.-G. Wen, Adv. Phys. 44, 405 (1995) 10.1080/00018739500101566
-
(1995)
Adv. Phys.
, vol.44
, pp. 405
-
-
Wen, X.-G.1
-
7
-
-
0000145935
-
-
10.1142/S0217979290000139;
-
X.-G. Wen, Int. J. Mod. Phys. B 4, 239 (1990) 10.1142/S0217979290000139
-
(1990)
Int. J. Mod. Phys. B
, vol.4
, pp. 239
-
-
Wen, X.-G.1
-
8
-
-
0001080950
-
-
10.1142/S0217979292000840;
-
X.-G. Wen, Int. J. Mod. Phys. B 6, 1711 (1992) 10.1142/S0217979292000840
-
(1992)
Int. J. Mod. Phys. B
, vol.6
, pp. 1711
-
-
Wen, X.-G.1
-
9
-
-
33744712217
-
-
10.1103/PhysRevB.41.9377
-
X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990). 10.1103/PhysRevB.41. 9377
-
(1990)
Phys. Rev. B
, vol.41
, pp. 9377
-
-
Wen, X.-G.1
Niu, Q.2
-
10
-
-
33645151438
-
-
10.1103/PhysRevLett.96.110404
-
A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006). 10.1103/PhysRevLett.96.110404
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 110404
-
-
Kitaev, A.1
Preskill, J.2
-
11
-
-
33645161396
-
-
10.1103/PhysRevLett.96.110405
-
M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006). 10.1103/PhysRevLett.96.110405
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 110405
-
-
Levin, M.1
Wen, X.-G.2
-
12
-
-
0037268624
-
-
10.1016/S0003-4916(02)00018-0
-
A. Yu. Kitaev, Ann. Phys. 303, 2 (2003). 10.1016/S0003-4916(02)00018-0
-
(2003)
Ann. Phys.
, vol.303
, pp. 2
-
-
Yu. Kitaev, A.1
-
13
-
-
0037220758
-
-
10.1090/S0273-0979-02-00964-3;
-
M. H. Freedman, A. Kitaev, M. J. Larsen, and Z. Wang, Bull., New Ser., Amer. Math. Soc. 40, 31 (2003) 10.1090/S0273-0979-02-00964-3
-
(2003)
Bull., New Ser., Amer. Math. Soc.
, vol.40
, pp. 31
-
-
Freedman, M.H.1
Kitaev, A.2
Larsen, M.J.3
Wang, Z.4
-
14
-
-
52249107842
-
-
10.1103/RevModPhys.80.1083
-
C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008). 10.1103/RevModPhys.80.1083
-
(2008)
Rev. Mod. Phys.
, vol.80
, pp. 1083
-
-
Nayak, C.1
Simon, S.H.2
Stern, A.3
Freedman, M.4
Das Sarma, S.5
-
15
-
-
0037343498
-
-
10.1007/s00220-002-0785-1;
-
M. Freedman, Commun. Math. Phys. 234, 129 (2003) 10.1007/s00220-002-0785- 1
-
(2003)
Commun. Math. Phys.
, vol.234
, pp. 129
-
-
Freedman, M.1
-
16
-
-
33644941237
-
-
10.1103/PhysRevB.72.024412;
-
P. Fendley and E. Fradkin, Phys. Rev. B 72, 024412 (2005) 10.1103/PhysRevB.72.024412
-
(2005)
Phys. Rev. B
, vol.72
, pp. 024412
-
-
Fendley, P.1
Fradkin, E.2
-
18
-
-
62549090966
-
-
10.1007/s00220-009-0757-9;
-
L. Fidkowski, M. Freedman, C. Nayak, K. Walker, and Z. Wang, Commun. Math. Phys. 287, 805 (2009) 10.1007/s00220-009-0757-9
-
(2009)
Commun. Math. Phys.
, vol.287
, pp. 805
-
-
Fidkowski, L.1
Freedman, M.2
Nayak, C.3
Walker, K.4
Wang, Z.5
-
19
-
-
54849408372
-
-
10.1016/j.aop.2008.04.011
-
P. Fendley, Ann. Phys. 323, 3113 (2008). 10.1016/j.aop.2008.04.011
-
(2008)
Ann. Phys.
, vol.323
, pp. 3113
-
-
Fendley, P.1
-
20
-
-
15744363524
-
-
10.1103/PhysRevB.71.045110
-
M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005). 10.1103/PhysRevB.71.045110
-
(2005)
Phys. Rev. B
, vol.71
, pp. 045110
-
-
Levin, M.A.1
Wen, X.-G.2
-
21
-
-
67649433958
-
-
That is, linear dependencies between amplitudes of locally differing configurations.
-
That is, linear dependencies between amplitudes of locally differing configurations.
-
-
-
-
22
-
-
36549074539
-
-
10.1103/PhysRevLett.99.220405;
-
G. Vidal, Phys. Rev. Lett. 99, 220405 (2007) 10.1103/PhysRevLett.99. 220405
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 220405
-
-
Vidal, G.1
-
23
-
-
52149091646
-
-
10.1103/PhysRevLett.101.110501
-
G. Vidal, Phys. Rev. Lett. 101, 110501 (2008). 10.1103/PhysRevLett.101. 110501
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 110501
-
-
Vidal, G.1
-
24
-
-
67649442049
-
-
This is essential to avoid increasing the number of degrees of freedom. Our RG transformation fits nicely into the general theoretical framework of Ref. but its derivation is independent of Ref. and motivated by topological properties of string nets.
-
This is essential to avoid increasing the number of degrees of freedom. Our RG transformation fits nicely into the general theoretical framework of Ref. but its derivation is independent of Ref. and motivated by topological properties of string nets.
-
-
-
-
25
-
-
40849088480
-
-
10.1103/PhysRevLett.100.070404
-
M. Aguado and G. Vidal, Phys. Rev. Lett. 100, 070404 (2008). 10.1103/PhysRevLett.100.070404
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 070404
-
-
Aguado, M.1
Vidal, G.2
-
26
-
-
67649445283
-
-
The phases associated with the models studied in Ref. correspond to the modular tensor category associated with the quantum double D (G) of a finite group G. Note that Levin and Wen's construction does not require this specific form of the category.
-
The phases associated with the models studied in Ref. correspond to the modular tensor category associated with the quantum double D (G) of a finite group G. Note that Levin and Wen's construction does not require this specific form of the category.
-
-
-
-
27
-
-
65549170919
-
-
10.1103/PhysRevB.79.144108
-
G. Evenbly and G. Vidal, Phys. Rev. B 79, 144108 (2009). 10.1103/PhysRevB.79.144108
-
(2009)
Phys. Rev. B
, vol.79
, pp. 144108
-
-
Evenbly, G.1
Vidal, G.2
-
29
-
-
67649417413
-
-
Indeed, if |Ψ G is a ground state of HG then by Lemma 2 |Ψ G = Zp† | Ψ′ G′ and thus Zp |Ψ G = | Ψ′ G′ for some ground state | Ψ′ G′ of H G′. Conversely, if | Ψ′ G′ is a ground state of H G′ then let |Ψ G = Zp† | Ψ′ G′ so | Ψ′ G = Zp |Ψ G. Equation 7 implies that Zp† B q′ = Bq Qv Bp Zp† so |Ψ G = Bq Qv Bp |Ψ G. Thus |Ψ G is fixed by all plaquette and vertex operators, so is a ground state of HG. Alternatively, we could have used the fact that HG and H G′ have the same ground-space degeneracy.
-
Indeed, if |Ψ G is a ground state of HG then by Lemma 2 |Ψ G = Zp† | Ψ′ G′ and thus Zp |Ψ G = | Ψ′ G′ for some ground state | Ψ′ G′ of H G′. Conversely, if | Ψ′ G′ is a ground state of H G′ then let |Ψ G = Zp† | Ψ′ G′ so | Ψ′ G = Zp |Ψ G. Equation 7 implies that Zp† B q′ = Bq Qv Bp Zp† so |Ψ G = Bq Qv Bp |Ψ G. Thus |Ψ G is fixed by all plaquette and vertex operators, so is a ground state of HG. Alternatively, we could have used the fact that HG and H G′ have the same ground-space degeneracy.
-
-
-
-
30
-
-
67649426773
-
-
The degeneracy is a function of the genus and the fusion rules of the tensor category. It can be computed by considering, as in Ref., a minimal set of inequivalent string-net configurations. For example, for the Fibonacci model, which has one nontrivial string label, the ground space on the torus is four dimensional. This corresponds to the different configurations of strings along the two fundamental 1 cycles.
-
The degeneracy is a function of the genus and the fusion rules of the tensor category. It can be computed by considering, as in Ref., a minimal set of inequivalent string-net configurations. For example, for the Fibonacci model, which has one nontrivial string label, the ground space on the torus is four dimensional. This corresponds to the different configurations of strings along the two fundamental 1 cycles.
-
-
-
-
31
-
-
34548847751
-
-
10.1103/PhysRevLett.99.120601
-
M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007). 10.1103/PhysRevLett.99.120601
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 120601
-
-
Levin, M.1
Nave, C.P.2
-
32
-
-
67649448344
-
-
Observe that the only required ingredients for this circuit are local gates performing F -moves and the preparation of single-particle states |0 e in the vacuum (cf. Lemma 2). The circuit C is an exact MERA (Ref.) of the ground-state wave function |Ψ L of the string-net condensed phase.
-
Observe that the only required ingredients for this circuit are local gates performing F -moves and the preparation of single-particle states |0 e in the vacuum (cf. Lemma 2). The circuit C is an exact MERA (Ref.) of the ground-state wave function |Ψ L of the string-net condensed phase.
-
-
-
-
34
-
-
30444456387
-
-
10.1016/j.aop.2005.10.005
-
A. Kitaev, Ann. Phys. 321, 2 (2006). 10.1016/j.aop.2005.10.005
-
(2006)
Ann. Phys.
, vol.321
, pp. 2
-
-
Kitaev, A.1
|