-
1
-
-
35949034896
-
-
10.1103/RevModPhys.47.773
-
K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975). 10.1103/RevModPhys.47.773
-
(1975)
Rev. Mod. Phys.
, vol.47
, pp. 773
-
-
Wilson, K.G.1
-
2
-
-
3442895828
-
-
10.1103/PhysRevLett.69.2863;
-
S. R. White, Phys. Rev. Lett. 69, 2863 (1992) 10.1103/PhysRevLett.69.2863
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 2863
-
-
White, S.R.1
-
3
-
-
20044389808
-
-
10.1103/PhysRevB.48.10345
-
S. R. White, Phys. Rev. B 48, 10345 (1993). 10.1103/PhysRevB.48.10345
-
(1993)
Phys. Rev. B
, vol.48
, pp. 10345
-
-
White, S.R.1
-
4
-
-
36549074539
-
-
10.1103/PhysRevLett.99.220405
-
G. Vidal, Phys. Rev. Lett. 99, 220405 (2007). 10.1103/PhysRevLett.99. 220405
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 220405
-
-
Vidal, G.1
-
6
-
-
64649103248
-
-
e-print arXiv:0801.2449v1
-
e-print arXiv:0801.2449v1.
-
-
-
-
7
-
-
52149091646
-
-
10.1103/PhysRevLett.101.110501
-
G. Vidal, Phys. Rev. Lett. 101, 110501 (2008). 10.1103/PhysRevLett.101. 110501
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 110501
-
-
Vidal, G.1
-
8
-
-
40849088480
-
-
10.1103/PhysRevLett.100.070404;
-
M. Aguado and G. Vidal, Phys. Rev. Lett. 100, 070404 (2008) 10.1103/PhysRevLett.100.070404
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 070404
-
-
Aguado, M.1
Vidal, G.2
-
11
-
-
64649107393
-
-
arXiv:0707.1454v3, Phys. Rev. B (to be published).
-
G. Evenbly and G. Vidal, e-print arXiv:0707.1454v3, Phys. Rev. B (to be published).
-
-
-
Evenbly, G.1
Vidal, G.2
-
14
-
-
64649089766
-
-
In Ref. the ascending, descending, and scaling superoperators were called quantum MERA channel and MERA transfer matrix. We emphasize that these superoperators, an essential part of the MERA formalism, were introduced in Ref. (see, e.g., Fig. 5 of Ref. for an explicit construction of the descending superoperator, where it is also evident that it is a quantum channel).
-
In Ref. the ascending, descending, and scaling superoperators were called quantum MERA channel and MERA transfer matrix. We emphasize that these superoperators, an essential part of the MERA formalism, were introduced in Ref. (see, e.g., Fig. 5 of Ref. for an explicit construction of the descending superoperator, where it is also evident that it is a quantum channel).
-
-
-
-
16
-
-
64649088205
-
-
Our numerics show that the lowest nΔ scaling dimensions fulfill Δα (1) Δα Δα CFT, where nΔ grows with χ.
-
Our numerics show that the lowest nΔ scaling dimensions fulfill Δα (1) Δα Δα CFT, where nΔ grows with χ.
-
-
-
-
17
-
-
64649084878
-
-
Alternatively, the central charge c can be evaluated from the two- and three-point correlators of the stress energy tensor as explored elsewhere
-
Alternatively, the central charge c can be evaluated from the two- and three-point correlators of the stress energy tensor as explored elsewhere (J. I. Latorre, private communication).
-
-
-
Latorre, J.I.1
-
18
-
-
0038115189
-
-
10.1103/PhysRevLett.90.227902;
-
G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003) 10.1103/PhysRevLett.90.227902
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 227902
-
-
Vidal, G.1
Latorre, J.I.2
Rico, E.3
Kitaev, A.4
-
20
-
-
64649091066
-
-
In practice we only compute the first k terms (k 2,3) of the expansion h̄ = h0 + h1 /3+ h2 /9+. This average is only needed when H contains operators that are irrelevant in the RG sense.
-
In practice we only compute the first k terms (k 2,3) of the expansion h̄ = h0 + h1 /3+ h2 /9+. This average is only needed when H contains operators that are irrelevant in the RG sense.
-
-
-
-
21
-
-
0000977044
-
-
10.1088/0305-4470/17/7/003;
-
J. Cardy, J. Phys. A 17, L385 (1984) 10.1088/0305-4470/17/7/003
-
(1984)
J. Phys. A
, vol.17
, pp. 385
-
-
Cardy, J.1
-
22
-
-
0011402903
-
-
10.1016/0550-3213(86)90552-3
-
J. Cardy Nucl. Phys. B 270, 186 (1986). 10.1016/0550-3213(86)90552-3
-
(1986)
Nucl. Phys. B
, vol.270
, pp. 186
-
-
Cardy, J.1
|