메뉴 건너뛰기




Volumn 29, Issue 12, 2009, Pages 3283-3287

Discriminating and quantifying potential adulteration in virgin olive oil by near infrared spectroscopy with BP-ANN and pls

Author keywords

BP artificial neural network (BP ANN); Discrimination and quantification; Near infrared spectroscopy (NIR); Partial least square (PLS); Virgin olive oil

Indexed keywords

ANALYSIS MODELS; BP ARTIFICIAL NEURAL NETWORK; CALIBRATION MODEL; CROSS VALIDATION; LEAST SQUARES; NEAR INFRARED; NEW APPROACHES; NIR SPECTRUM; ORIGINAL MODEL; PARTIAL LEAST SQUARES; PLS MODELS; PRE-TREATMENT; QUANTITATIVE ANALYSIS; R VALUE; RESEARCH METHODS; SESAME OIL; SEVERAL VARIABLES; SOYBEAN OIL; SPECTRAL DATA; SPECTRAL RANGE; STANDARD ERRORS; SUNFLOWER OIL; TEST SAMPLES; VIRGIN OLIVE OIL;

EID: 72449208019     PISSN: 10000593     EISSN: None     Source Type: Journal    
DOI: 10.3964/j.issn.1000-0593(2009)12-3283-05     Document Type: Article
Times cited : (16)

References (17)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.