-
1
-
-
33748475725
-
-
Rossel C., Mereu B., Marchiori C., Caimi D., Sousa M., Guiller A., Seigwart H., Germann R., Locquet J.-P., Fompeyrine J., Webb D.J., Dieker Ch., and Won Seo J. Appl. Phys. Lett. 89 (2006) 053506
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 053506
-
-
Rossel, C.1
Mereu, B.2
Marchiori, C.3
Caimi, D.4
Sousa, M.5
Guiller, A.6
Seigwart, H.7
Germann, R.8
Locquet, J.-P.9
Fompeyrine, J.10
Webb, D.J.11
Dieker, Ch.12
Won Seo, J.13
-
3
-
-
34250706182
-
-
van Loef Edgar.V., Higgins W.M., Glodo J., Brecher C., Lempicki A., Venkataramani V., Moses W.W., Derenzo S.E., and Shan K.S. IEEE Trans. Nucl. Sci. 54 (2007) 741
-
(2007)
IEEE Trans. Nucl. Sci.
, vol.54
, pp. 741
-
-
van Loef, Edgar.V.1
Higgins, W.M.2
Glodo, J.3
Brecher, C.4
Lempicki, A.5
Venkataramani, V.6
Moses, W.W.7
Derenzo, S.E.8
Shan, K.S.9
-
6
-
-
0027115880
-
-
Cohen R.E. Nature 358 (1992) 136
-
(1992)
Nature
, vol.358
, pp. 136
-
-
Cohen, R.E.1
-
8
-
-
36348948031
-
-
Kim S.J., Seo S.S.A., Moon S.J., Choi W.S., Hur N.H., Seo Y.K., and Lee Y.S. J. Korean Phys. Soc. 51 (2007) S161
-
(2007)
J. Korean Phys. Soc.
, vol.51
-
-
Kim, S.J.1
Seo, S.S.A.2
Moon, S.J.3
Choi, W.S.4
Hur, N.H.5
Seo, Y.K.6
Lee, Y.S.7
-
10
-
-
36649029963
-
-
Sousa M., Rossel C., Marchiori C., Siegwart H., Caimi D., Locquet J.-P., Webb D.W., Germann R., Fompeyrine J., Babich K., Seo J.W., and Dieker Ch. J. Appl. Phys. 102 (2007) 104103
-
(2007)
J. Appl. Phys.
, vol.102
, pp. 104103
-
-
Sousa, M.1
Rossel, C.2
Marchiori, C.3
Siegwart, H.4
Caimi, D.5
Locquet, J.-P.6
Webb, D.W.7
Germann, R.8
Fompeyrine, J.9
Babich, K.10
Seo, J.W.11
Dieker, Ch.12
-
12
-
-
59049094105
-
-
Feng Z., Hu H., Cui S., Bai C., and Li H. J. phys. Chem. Solids 70 (2009) 412
-
(2009)
J. phys. Chem. Solids
, vol.70
, pp. 412
-
-
Feng, Z.1
Hu, H.2
Cui, S.3
Bai, C.4
Li, H.5
-
13
-
-
58149378003
-
-
and references there in
-
Noh H.-J., Kim B.J., Oh S.-J., Park J.-H., Lin H.-J., Chen C.T., Lee Y.S., Yamaura K., and Takayama-Muromachi E. J. Phys.: Condens. Matter 20 (2008) 485208 and references there in
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 485208
-
-
Noh, H.-J.1
Kim, B.J.2
Oh, S.-J.3
Park, J.-H.4
Lin, H.-J.5
Chen, C.T.6
Lee, Y.S.7
Yamaura, K.8
Takayama-Muromachi, E.9
-
16
-
-
0038218575
-
-
Lee Y.S., Lee J.S., Noh T.W., Young Byun D., Soo Yoo K., Yamaura K., and Takayama-Muromachi E. Phys. Rev. B 67 (2003) 113101
-
(2003)
Phys. Rev. B
, vol.67
, pp. 113101
-
-
Lee, Y.S.1
Lee, J.S.2
Noh, T.W.3
Young Byun, D.4
Soo Yoo, K.5
Yamaura, K.6
Takayama-Muromachi, E.7
-
18
-
-
72449160321
-
-
3. As the difference of the Madulung potential between transition metal and oxygen sites increases with the increasing lattice constant, the lattice constant increase reduces the difference in the ionization energy between Ti and Zr/Hf
-
3. As the difference of the Madulung potential between transition metal and oxygen sites increases with the increasing lattice constant, the lattice constant increase reduces the difference in the ionization energy between Ti and Zr/Hf
-
-
-
-
20
-
-
85044552190
-
-
Our experimental finding appear to be rather contradictory to the claims of G. Fabricius et al, Phys. Rev. B 55 (1997) 164, They performed the local density approximation calculation on the electronic structure of SrHfO3 and suggested a stronger hybridization for SrTiO3 than for SrHfO3 on basis of the calculated result that the Ti 3d component of the density of states in the valence region is greater than the Hf 5d component. Also, they claimed that the effect of greater Ti 3d-O 2p covalency than for Hf may be attributed to the much smaller binding energy of d orbitals in Hf (8.14 eV) than Ti 11.04 eV
-
3 on basis of the calculated result that the Ti 3d component of the density of states in the valence region is greater than the Hf 5d component. Also, they claimed that the effect of greater Ti 3d-O 2p covalency than for Hf may be attributed to the much smaller binding energy of d orbitals in Hf (8.14 eV) than Ti (11.04 eV)
-
-
-
|