메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 699-705

Naïve filterbots for robust cold-start recommendations

Author keywords

Cold start; Collaborative filtering; Hybrid content and collaborative filtering; Na ve filterbots; Performance analysis; Recommender systems; Robustness

Indexed keywords

ALGORITHMS; COMPUTER SUPPORTED COOPERATIVE WORK; DATA MINING; DATA STRUCTURES; KNOWLEDGE ACQUISITION; PERFORMANCE; USER INTERFACES;

EID: 33749578362     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1150402.1150490     Document Type: Conference Paper
Times cited : (144)

References (32)
  • 1
    • 0002734008 scopus 로고    scopus 로고
    • Horting hatches an egg: A new graph-theoretic approach to collaborative filtering
    • C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu. Horting hatches an egg: a new graph-theoretic approach to collaborative filtering. In ACM KDD, pages 201-212, 1999.
    • (1999) ACM KDD , pp. 201-212
    • Aggarwal, C.C.1    Wolf, J.L.2    Wu, K.-L.3    Yu, P.S.4
  • 2
    • 0031103679 scopus 로고    scopus 로고
    • Fab: Content-based, collaborative recommendation
    • M. Balabanovic and Y. Shoham. Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3):66-72, 1997.
    • (1997) Communications of the ACM , vol.40 , Issue.3 , pp. 66-72
    • Balabanovic, M.1    Shoham, Y.2
  • 3
    • 8644290257 scopus 로고    scopus 로고
    • A joint framework for collaborative and content filtering
    • J. Basilico and T. Hofmann. A joint framework for collaborative and content filtering. In ACM SIGIR, 2004.
    • (2004) ACM SIGIR
    • Basilico, J.1    Hofmann, T.2
  • 4
    • 0031640270 scopus 로고    scopus 로고
    • Recommendation as classification: Using social and content-based information in recommendation
    • C. Basu, H. Hirsh, and W. W. Cohen. Recommendation as classification: Using social and content-based information in recommendation. In AAAI/IAAI, pages 714-720, 1998.
    • (1998) AAAI/IAAI , pp. 714-720
    • Basu, C.1    Hirsh, H.2    Cohen, W.W.3
  • 5
    • 0002731035 scopus 로고    scopus 로고
    • Learning collaborative information filters
    • D. Billsus and M. J. Pazzani. Learning collaborative information filters. In ICML, pages 46-54, 1998.
    • (1998) ICML , pp. 46-54
    • Billsus, D.1    Pazzani, M.J.2
  • 6
    • 33749567580 scopus 로고    scopus 로고
    • Empirical analysis of predictive algorithms for collaborative filtering
    • J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In UAI, pages 43-52, 1998.
    • (1998) UAI , pp. 43-52
    • Breese, J.S.1    Heckerman, D.2    Kadie, C.3
  • 7
    • 3042821101 scopus 로고    scopus 로고
    • Item-based top-n recommendation algorithms
    • Jan
    • M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. ACM TOIS, 22(1):143-177. Jan 2004.
    • (2004) ACM TOIS , vol.22 , Issue.1 , pp. 143-177
    • Deshpande, M.1    Karypis, G.2
  • 8
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: A constant time collaborative filtering algorithm
    • K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4(2):133-151, 2001.
    • (2001) Information Retrieval , vol.4 , Issue.2 , pp. 133-151
    • Goldberg, K.1    Roeder, T.2    Gupta, D.3    Perkins, C.4
  • 10
    • 85015559680 scopus 로고    scopus 로고
    • An algorithmic framework for performing collaborative filtering
    • J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In ACM SIGIR, pages 230-237, 1999.
    • (1999) ACM SIGIR , pp. 230-237
    • Herlocker, J.L.1    Konstan, J.A.2    Borchers, A.3    Riedl, J.4
  • 11
    • 84862271600 scopus 로고    scopus 로고
    • Latent class models for collaborative filtering
    • T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In IJCAI, pages 688-693, 1999.
    • (1999) IJCAI , pp. 688-693
    • Hofmann, T.1    Puzicha, J.2
  • 12
    • 3042819722 scopus 로고    scopus 로고
    • Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
    • Jan
    • Z. Huang, H. Chen, and D. Zeng. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM TOIS, 22(1):116-142, Jan 2004.
    • (2004) ACM TOIS , vol.22 , Issue.1 , pp. 116-142
    • Huang, Z.1    Chen, H.2    Zeng, D.3
  • 13
    • 0035747556 scopus 로고    scopus 로고
    • Evaluation of item-based top-n recommendation algorithms
    • G. Karypis. Evaluation of item-based top-n recommendation algorithms. In CIKM, pages 247-254, 2001.
    • (2001) CIKM , pp. 247-254
    • Karypis, G.1
  • 16
    • 8644228708 scopus 로고    scopus 로고
    • A collaborative filtering algorithm and evaluation metric that accurately model the user experience
    • M. R. McLaughlin and J. I. Herlocker. A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In ACM SIGIR, pages 329-336, 2004.
    • (2004) ACM SIGIR , pp. 329-336
    • McLaughlin, M.R.1    Herlocker, J.I.2
  • 17
    • 8344240335 scopus 로고    scopus 로고
    • Interfaces for eliciting new user preferences in recommender systems
    • S. McNee, S. Lam, J. Konstan, and J. Riedl. Interfaces for eliciting new user preferences in recommender systems. In UM, pages 178-188, 2003.
    • (2003) UM , pp. 178-188
    • McNee, S.1    Lam, S.2    Konstan, J.3    Riedl, J.4
  • 18
    • 33749244569 scopus 로고    scopus 로고
    • Content-boosted collaborative filtering
    • P. Melville, R. Mooney, and R. Nagarajan. Content-boosted collaborative filtering. In AAAI, 2002.
    • (2002) AAAI
    • Melville, P.1    Mooney, R.2    Nagarajan, R.3
  • 20
    • 84867817558 scopus 로고    scopus 로고
    • Collaborative filtering with the simple bayesian classifier
    • K. Miyahara and M. J. Pazzani. Collaborative filtering with the simple bayesian classifier. In PRICAI, pages 679-689, 2000.
    • (2000) PRICAI , pp. 679-689
    • Miyahara, K.1    Pazzani, M.J.2
  • 23
    • 0001391984 scopus 로고    scopus 로고
    • Collaborative filtering by personality diagnosis: A hybrid memory-and model-based approach
    • D. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering by personality diagnosis: A hybrid memory- and model-based approach. In UAI, pages 473-480, 2000.
    • (2000) UAI , pp. 473-480
    • Pennock, D.1    Horvitz, E.2    Lawrence, S.3    Giles, C.L.4
  • 24
    • 0012253296 scopus 로고    scopus 로고
    • Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments
    • A. Popescul, L. Ungar, D. Pennock, and S. Lawrence. Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments. In UAI, pages 437-444, 2001.
    • (2001) UAI , pp. 437-444
    • Popescul, A.1    Ungar, L.2    Pennock, D.3    Lawrence, S.4
  • 25
    • 0036384150 scopus 로고    scopus 로고
    • Getting to know you: Learning new user preferences in recommender systems
    • A. Rashid, I. Albert, D. Cosley, S. Lam, S. Menee, J. Konstan, and J. Riedl. Getting to know you: Learning new user preferences in recommender systems. In IUI, pages 127-134, 2002.
    • (2002) IUI , pp. 127-134
    • Rashid, A.1    Albert, I.2    Cosley, D.3    Lam, S.4    Menee, S.5    Konstan, J.6    Riedl, J.7
  • 26
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In ICML, 2005.
    • (2005) ICML
    • Rennie, J.1    Srebro, N.2
  • 27
    • 85030174634 scopus 로고
    • GroupLens: An open architecture for collaborative filtering of netnews
    • P. Resnick, N. lacovou, M. Suchak, P. Bergstorm, and J. Riedl. GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In ACM CSCW, pages 175-186, 1994.
    • (1994) ACM CSCW , pp. 175-186
    • Resnick, P.1    Lacovou, N.2    Suchak, M.3    Bergstorm, P.4    Riedl, J.5
  • 28
    • 0010279656 scopus 로고    scopus 로고
    • Application of dimensionality reduction in recommender systems-a case study
    • B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recommender systems-a case study. In ACM Web KDD Workshop, 2000.
    • (2000) ACM Web KDD Workshop
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Riedl, J.4
  • 29
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285-295, 2001.
    • (2001) WWW , pp. 285-295
    • Sarwar, B.M.1    Karypis, G.2    Konstan, J.A.3    Reidl, J.4
  • 30
    • 0029179043 scopus 로고
    • Social information filtering: Algorithms for automating "word of mouth"
    • U. Shardanand and P. Mass. Social information filtering: Algorithms for automating "word of mouth". In CHI, 1995.
    • (1995) CHI
    • Shardanand, U.1    Mass, P.2
  • 32
    • 0029181921 scopus 로고
    • Recommending and evaluating choices in a virtual community of use
    • M. R. W. Hill, L. Stead and G. Fumas. Recommending and evaluating choices in a virtual community of use. In ACM CHI, pages 194-201, 1995.
    • (1995) ACM CHI , pp. 194-201
    • Hill, M.R.W.1    Stead, L.2    Fumas, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.