메뉴 건너뛰기




Volumn 45, Issue 10, 2009, Pages

Complexity-based robust hydrologic prediction

Author keywords

[No Author keywords available]

Indexed keywords

ENSEMBLE MEMBERS; ENSEMBLE METHODS; FINITE SAMPLE PERFORMANCE; FUTURE OBSERVATIONS; HYDROLOGIC PREDICTION; MODELING UNCERTAINTIES; NEAREST NEIGHBOR METHOD; NEAREST NEIGHBOR MODEL; ONE STEP; PREDICTION MODEL; PROBABILISTIC ENSEMBLE; ROBUST PARAMETERS; SAMPLE SIZES; SMALL SAMPLE SIZE; STREAMFLOW PREDICTION; UNCERTAINTY BOUNDS; VC DIMENSION; WATERRESOURCE MANAGEMENT;

EID: 72149090141     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2008WR007524     Document Type: Article
Times cited : (15)

References (65)
  • 1
    • 33748942107 scopus 로고    scopus 로고
    • Multimodel combination techniques for analysis of hydrological simulations: Application to distributed model intercomparison project results
    • DOI 10.1175/JHM519.1
    • Ajami, N. K., Q. Y. Duan, X. G. Gao, and S. Sorooshian (2006), Multimodel combination techniques for analysis of hydrological simulations: Application to distributed model intercomparison project results, J. Hydrometeorol., 7(4), 755-768, doi:10.1175/JHM519.1. (Pubitemid 44430743)
    • (2006) Journal of Hydrometeorology , vol.7 , Issue.4 , pp. 755-768
    • Ajami, N.K.1    Duan, Q.2    Gao, X.3    Sorooshian, S.4
  • 2
    • 33847624519 scopus 로고    scopus 로고
    • An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction
    • DOI 10.1029/2005WR004745
    • Ajami, N. K., Q. Duan, and S. Sorooshian (2007), An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, doi:10.1029/2005WR004745. (Pubitemid 46364281)
    • (2007) Water Resources Research , vol.43 , Issue.1
    • Ajami, N.K.1    Duan, Q.2    Sorooshian, S.3
  • 3
    • 0030906022 scopus 로고    scopus 로고
    • An extended difference of coherence test for comparing and combining several independent coherence estimates: Theory and application to the study of motor units and physiological tremor
    • DOI 10.1016/S0165-0270(96)02214-5, PII S0165027096022145
    • Amjad, A. M., D. M. Halliday, J. R. Rosenberg, and B. A. Conway (1997), An extended difference of coherence test for comparing and combining several independent coherent estimates: Theory and application to the study of motor units and physiological tremor, J. Neurosci. Methods, 73, 69-79, doi:10.1016/S0165-0270(96)02214-5. (Pubitemid 27166126)
    • (1997) Journal of Neuroscience Methods , vol.73 , Issue.1 , pp. 69-79
    • Amjad, A.M.1    Halliday, D.M.2    Rosenberg, J.R.3    Conway, B.A.4
  • 4
    • 0012813556 scopus 로고    scopus 로고
    • Evaluation of a three-step method for choosing the number of bootstrap repetitions
    • DOI 10.1016/S0304-4076(01)00047-1, PII S0304407601000471
    • Andrews, D. W. K., and M. Buchinsky (2001), Evaluation of a three-step method for choosing the number of bootstrap repetitions, J. Econometrics, 103, 345-386, doi:10.1016/S0304-4076(01)00047-1. (Pubitemid 33645276)
    • (2001) Journal of Econometrics , vol.103 , Issue.1-2 , pp. 345-386
    • Andrews, D.W.K.1    Buchinsky, M.2
  • 5
    • 0037004058 scopus 로고    scopus 로고
    • Climate and landscape controls on water balance model complexity over changing timescales
    • doi:10.1029/2002WR001487
    • Atkinson, S. E., R. A. Woods, and M. Sivapalan (2002), Climate and landscape controls on water balance model complexity over changing timescales, Water Resour. Res., 38(12), 1314, doi:10.1029/2002WR001487.
    • (2002) Water Resour. Res. , vol.38 , Issue.12 , pp. 1314
    • Atkinson, S.E.1    Woods, R.A.2    Sivapalan, M.3
  • 6
    • 25844488104 scopus 로고    scopus 로고
    • Modeling data relationships with a local variance reducing technique: Applications in hydrology
    • DOI 10.1029/2004WR003851, W08404
    • Bárdossy, A., G. G. S. Pegram, and L. Samaniego (2005), Modeling data relationships with a local variance reducing technique: Applications in hydrology, Water Resour. Res., 41, W08404, doi:10.1029/2004WR003851. (Pubitemid 41393336)
    • (2005) Water Resources Research , vol.41 , Issue.8 , pp. 1-13
    • Bardossy, A.1    Pegram, G.G.S.2    Samaniego, L.3
  • 7
    • 0000268018 scopus 로고    scopus 로고
    • The complexity of model classes, and smoothing noisy data
    • doi:10.1016/S0167-6911(98)00008-5
    • Bartlett, P. L., and S. R. Kulkarni (1998), The complexity of model classes, and smoothing noisy data, Syst. Control Lett., 34, 133-140, doi:10.1016/S0167-6911(98)00008-5.
    • (1998) Syst. Control Lett. , vol.34 , pp. 133-140
    • Bartlett, P.L.1    Kulkarni, S.R.2
  • 8
    • 67049137556 scopus 로고    scopus 로고
    • Towards a coherent philosophy for modelling the environment
    • doi:10.1098/rspa.2002.0986
    • Beven, K. (2002), Towards a coherent philosophy for modelling the environment, Proc. R. Soc. London A, 458, 2465-2484, doi:10.1098/rspa.2002.0986.
    • (2002) Proc. R. Soc. London A , vol.458 , pp. 2465-2484
    • Beven, K.1
  • 9
    • 28244461813 scopus 로고    scopus 로고
    • Does an interagency meeting in Washington imply uncertainty?
    • doi:10.1002/hyp.5573
    • Beven, K. (2004), Does an interagency meeting in Washington imply uncertainty?, Hydrol. Processes, 18(9), 1747-1750, doi:10.1002/hyp.5573.
    • (2004) Hydrol. Processes , vol.18 , Issue.9 , pp. 1747-1750
    • Beven, K.1
  • 10
    • 28244492298 scopus 로고    scopus 로고
    • On the concept of model structural error
    • Beven, K. (2005), On the concept of model structural error, Water Sci. Technol., 52(6), 167-175.
    • (2005) Water Sci. Technol. , vol.52 , Issue.6 , pp. 167-175
    • Beven, K.1
  • 11
    • 0027009437 scopus 로고
    • The future of distributed models - Model calibration and uncertainty prediction
    • doi:10.1002/hyp.3360060305
    • Beven, K., and A. Binley (1992), The future of distributed models - Model calibration and uncertainty prediction, Hydrol. Processes, 6(3), 279-298, doi:10.1002/hyp.3360060305.
    • (1992) Hydrol. Processes , vol.6 , Issue.3 , pp. 279-298
    • Beven, K.1    Binley, A.2
  • 12
    • 0036702622 scopus 로고    scopus 로고
    • Flood frequency estimation by continuous simulation for a catchment treated as ungauged (with uncertainty
    • doi:10.1029/2001WR000500
    • Blazkova, S., and K. Beven (2002), Flood frequency estimation by continuous simulation for a catchment treated as ungauged (with uncertainty), Water Resour. Res., 38(8), 1139, doi:10.1029/2001WR000500.
    • (2002) Water Resour. Res. , vol.38 , Issue.8 , pp. 1139
    • Blazkova, S.1    Beven, K.2
  • 13
    • 2342648259 scopus 로고    scopus 로고
    • Flood frequency estimation by continuous simulation of subcatchment rainfalls and discharges with the aim of improving dam safety assessment in a large basin in the Czech Republic
    • DOI 10.1016/j.jhydrol.2003.12.025, PII S0022169404000198
    • Blazkova, S., and K. Beven (2004), Flood frequency estimation by continuous simulation of subcatchment rainfalls and discharges with the aim of improving dam safety assessment in a large basin in the Czech Republic, J. Hydrol., 292(1-4), 153-172, doi:10.1016/j.jhydrol.2003.12.025. (Pubitemid 38583604)
    • (2004) Journal of Hydrology , vol.292 , Issue.1-4 , pp. 153-172
    • Blazkova, S.1    Beven, K.2
  • 14
    • 0033943215 scopus 로고    scopus 로고
    • Flood frequency estimation by continuous simulation (with likelihood based uncertainty estimation)
    • Cameron, D., K. Beven, J. Tawn, and P. Naden (2000), Flood frequency estimation by continuous simulation (with likelihood based uncertainty estimation), Hydrol. Earth Syst. Sci., 4(1), 23-34. (Pubitemid 30480601)
    • (2000) Hydrology and Earth System Sciences , vol.4 , Issue.1 , pp. 23-34
    • Cameron, D.1    Beven, K.2    Tawn, J.3    Naden, P.4
  • 16
    • 33646155324 scopus 로고    scopus 로고
    • VC-dimension and structural risk minimization for the analysis of nonlinear ecological models
    • doi:10.1016/j.amc.2005.09.050
    • Corani, G., and M. Gatto (2006a), VC-dimension and structural risk minimization for the analysis of nonlinear ecological models, Appl. Math. Comput., 176, 166-176, doi:10.1016/j.amc.2005.09.050.
    • (2006) Appl. Math. Comput. , vol.176 , pp. 166-176
    • Corani, G.1    Gatto, M.2
  • 17
    • 28444476544 scopus 로고    scopus 로고
    • Model selection in demographic time series using VC-bounds
    • DOI 10.1016/j.ecolmodel.2005.08.019, PII S0304380005003856
    • Corani, G., and M. Gatto (2006b), Model selection in demographic time series using VC-bounds, Ecol. Modell., 191, 186-195, doi:10.1016/j.ecolmodel. 2005.08.019. (Pubitemid 41735462)
    • (2006) Ecological Modelling , vol.191 , Issue.1 , pp. 186-195
    • Corani, G.1    Gatto, M.2
  • 19
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker, F., and S. Smale (2001), On the mathematical foundations of learning, Bull. Am. Math. Soc., 39(1), 1-49.
    • (2001) Bull. Am. Math. Soc. , vol.39 , Issue.1 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 20
    • 1542651073 scopus 로고    scopus 로고
    • Prediction of runoff and soil moistures at the watershed scale: Effects of model complexity and parameter assignment
    • doi:10.1029/2002WR001439
    • Downer, C. W., and F. L. Ogden (2003), Prediction of runoff and soil moistures at the watershed scale: Effects of model complexity and parameter assignment, Water Resour. Res., 39(3), 1045, doi:10.1029/2002WR001439.
    • (2003) Water Resour. Res. , vol.39 , Issue.3 , pp. 1045
    • Downer, C.W.1    Ogden, F.L.2
  • 21
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • doi:10.1029/91WR02985
    • Duan, Q., S. Sorooshian, and V. Gupta (1992), Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28(4), 1015-1031, doi:10.1029/91WR02985.
    • (1992) Water Resour. Res. , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.3
  • 23
    • 33847274843 scopus 로고    scopus 로고
    • Multi-model ensemble hydrologic prediction using Bayesian model averaging
    • DOI 10.1016/j.advwatres.2006.11.014, PII S030917080600220X
    • Duan, Q. Y., N. K. Ajami, X. G. Gao, and S. Sorooshian (2007), Multimodel ensemble hydrologic prediction using Bayesian model averaging, Adv. Water Resour., 30(5), 1371-1386, doi:10.1016/j.advwatres.2006.11.014. (Pubitemid 46323445)
    • (2007) Advances in Water Resources , vol.30 , Issue.5 , pp. 1371-1386
    • Duan, Q.1    Ajami, N.K.2    Gao, X.3    Sorooshian, S.4
  • 24
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • doi:10.1214/aos/1176344552
    • Efron, B. (1979), Bootstrap methods: Another look at the jackknife, Ann. Stat., 7(1), 1-26, doi:10.1214/aos/1176344552.
    • (1979) Ann. Stat. , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 25
    • 0029659801 scopus 로고    scopus 로고
    • Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach
    • Freer, J., K. Beven, and B. Ambroise (1996), Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach, Water Resour. Res., 32(7), 2161-2173.
    • (1996) Water Resour. Res. , vol.32 , Issue.7 , pp. 2161-2173
    • Freer, J.1    Beven, K.2    Ambroise, B.3
  • 26
    • 4143139874 scopus 로고    scopus 로고
    • Towards the characterization of streamflow simulation uncertainty through multimodel ensembles
    • DOI 10.1016/j.jhydrol.2004.03.037, PII S002216940400246X
    • Georgakakos, K. P., D.-J. Seo, H. Gupta, J. Schaake, and M. B. Butts (2004), Towards the characterization of streamflow simulation uncertainty through multi-model ensemble, J. Hydrol., 298, 222-241, doi:10.1016/j.jhydrol. 2004.03.037. (Pubitemid 39098775)
    • (2004) Journal of Hydrology , vol.298 , Issue.1-4 , pp. 222-241
    • Georgakakos, K.P.1    Seo, D.-J.2    Gupta, H.3    Schaake, J.4    Butts, M.B.5
  • 27
    • 84961207695 scopus 로고    scopus 로고
    • Advances in automatic calibration of watershed models, in Calibration of Watershed Models
    • edited by Q. Duan et al. , AGU, Washington, D. C
    • Gupta, H., S. Sorooshian, T. Hogue, and D. P. Boyle (2003), Advances in automatic calibration of watershed models, in Calibration of Watershed Models, Water Sci. Appl., vol.6, edited by Q. Duan et al., pp. 9-28, AGU, Washington, D. C.
    • (2003) Water Sci. Appl. , vol.6 , pp. 9-28
    • Gupta, H.1    Sorooshian, S.2    Hogue, T.3    Boyle, D.P.4
  • 28
    • 26444548489 scopus 로고    scopus 로고
    • Model calibration and uncertainty estimation
    • edited by M. G. Anderson, John Wiley, Chichester, U. K
    • Gupta, H., K. Beven, and T. Wagener (2005), Model calibration and uncertainty estimation, in Encyclopedia of Hydrological Sciences, edited by M. G. Anderson, pp. 1-17, John Wiley, Chichester, U. K.
    • (2005) Encyclopedia of Hydrological Sciences , pp. 1-17
    • Gupta, H.1    Beven, K.2    Wagener, T.3
  • 29
    • 84950426508 scopus 로고
    • Bootstrapping in nonparametric regression: Local adaptive smoothing and confidence bands
    • doi:10.2307/2288926
    • Hardle, W., and A. W. Bowman (1988), Bootstrapping in nonparametric regression: Local adaptive smoothing and confidence bands, J. Am. Stat. Assoc., 83(401), 102-110, doi:10.2307/2288926.
    • (1988) J. Am. Stat. Assoc. , vol.83 , Issue.401 , pp. 102-110
    • Hardle, W.1    Bowman, A.W.2
  • 30
    • 84989183195 scopus 로고    scopus 로고
    • Problems in model averaging with dummy variables
    • paper presented at, Univ. of Oslo, Blindern, Norway, 6-7 May
    • Hendry, D. F., and J. J. Reade (2005), Problems in model averaging with dummy variables, paper presented at Model Evaluation in Macroeconomics Workshop, Univ. of Oslo, Blindern, Norway, 6-7 May.
    • (2005) Model Evaluation in Macroeconomics Workshop
    • Hendry, D.F.1    Reade, J.J.2
  • 31
    • 0027790160 scopus 로고
    • How much complexity is warranted in a rainfall-runoff model?
    • doi:10.1029/93WR00877
    • Jakeman, A. J., and G. M. Hornberger (1993), How much complexity is warranted in a rainfall-runoff model?, Water Resour. Res., 29(8), 2637-2649, doi:10.1029/93WR00877.
    • (1993) Water Resour. Res. , vol.29 , Issue.8 , pp. 2637-2649
    • Jakeman, A.J.1    Hornberger, G.M.2
  • 32
    • 0023524387 scopus 로고
    • Nearest neighbor methods for nonparametric rainfall-runoff forecasting
    • doi:10.1029/WR023i007p01300
    • Karlsson, M., and S. Yakowitz (1987), Nearest neighbor methods for nonparametric rainfall-runoff forecasting, Water Resour. Res., 23(7), 1300-1308, doi:10.1029/WR023i007p01300.
    • (1987) Water Resour. Res. , vol.23 , Issue.7 , pp. 1300-1308
    • Karlsson, M.1    Yakowitz, S.2
  • 33
    • 33646510313 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling: 2. Application
    • doi:10.1029/2005WR004376
    • Kavetski, D., G. Kuczera, and S. W. Franks (2006a), Bayesian analysis of input uncertainty in hydrological modeling: 2. Application, Water Resour. Res., 42, W03408, doi:10.1029/2005WR004376.
    • (2006) Water Resour. Res. , Issue.42
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 34
    • 33646510313 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory
    • doi:10.1029/2005WR004368
    • Kavetski, D., G. Kuczera, and S. W. Franks (2006b), Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, doi:10.1029/2005WR004368.
    • (2006) Water Resour. Res. , Issue.42
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 35
    • 0029663871 scopus 로고    scopus 로고
    • A nearest neighbor bootstrap for resampling hydrologic time series
    • DOI 10.1029/95WR02966
    • Lall, U., and A. Sharma (1996), A nearest neighbour bootstrap for resampling hydrologic time series, Water Resour. Res., 32(3), 679-693,doi:10.1029/95WR02966. (Pubitemid 26351903)
    • (1996) Water Resources Research , vol.32 , Issue.3 , pp. 679-693
    • Lall, U.1    Sharma, A.2
  • 36
    • 36648998731 scopus 로고    scopus 로고
    • Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework
    • DOI 10.1029/2006WR005756
    • Liu, Y., and H. V. Gupta (2007), Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework, Water Resour. Res., 43, W07401, doi:10.1029/2006WR005756. (Pubitemid 350194456)
    • (2007) Water Resources Research , vol.43 , Issue.7
    • Liu, Y.1    Gupta, H.V.2
  • 37
    • 31444439953 scopus 로고    scopus 로고
    • Ensemble predictions of runoff in ungauged catchments
    • DOI 10.1029/2005WR004289, W12434
    • McIntyre, N., H. Lee, H. Wheater, A. Young, and T. Wagener (2005), Ensemble predictions of runoff in ungauged catchments, Water Resour. Res., 41, W12434, doi:10.1029/2005WR004289. (Pubitemid 43151131)
    • (2005) Water Resources Research , vol.41 , Issue.12 , pp. 1-14
    • McIntyre, N.1    Lee, H.2    Wheater, H.3    Young, A.4    Wagener, T.5
  • 38
    • 11944268965 scopus 로고    scopus 로고
    • Dual state-parameter estimation of hydrological models using ensemble Kalman filter
    • DOI 10.1016/j.advwatres.2004.09.002, PII S0309170804001605
    • Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser (2005), Dual state-parameter estimation of hydrological models using ensemble Kalman filter, Adv. Water Resour., 28(2), 135-147, doi:10.1016/j.advwatres.2004.09.002. (Pubitemid 40102390)
    • (2005) Advances in Water Resources , vol.28 , Issue.2 , pp. 135-147
    • Moradkhani, H.1    Sorooshian, S.2    Gupta, H.V.3    Houser, P.R.4
  • 39
    • 0348225037 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of uncertain model predictions
    • DOI 10.1007/s00477-003-0151-7
    • Neuman, S. P. (2003), Maximum likelihood Bayesian averaging of uncertain model predictions, Stochastic Environ. Res. Risk Assess., 17(5), 291-305, doi:10.1007/s00477-003-0151-7. (Pubitemid 38013163)
    • (2003) Stochastic Environmental Research and Risk Assessment , vol.17 , Issue.5 , pp. 291-305
    • Neuman, S.P.1
  • 40
    • 0742308447 scopus 로고    scopus 로고
    • Philosophical issues in model assessment
    • edited by M. G. Anderson and P. D. Bates, John Wiley, New York
    • Oreskes, N., and K. Belitz (2001), Philosophical issues in model assessment, in Model Validation: Perspectives in Hydrological Science, edited by M. G. Anderson and P. D. Bates, pp. 23-41, John Wiley, New York.
    • (2001) Model Validation: Perspectives in Hydrological Science , pp. 23-41
    • Oreskes, N.1    Belitz, K.2
  • 42
    • 72149124639 scopus 로고    scopus 로고
    • Ensemble approach to link data uncertainty and parameter uncertainty within multi-objective frameworks
    • Fall Meet. Suppl., Abstract H51B-0351
    • Pande, S., L. A. Bastidas, and M. McKee (2005), Ensemble approach to link data uncertainty and parameter uncertainty within multi-objective frameworks, Eos Trans. AGU, 86(52), Fall Meet. Suppl., Abstract H51B-0351.
    • (2005) Eos Trans. AGU , vol.86 , Issue.52
    • Pande, S.1    Bastidas, L.A.2    McKee, M.3
  • 43
    • 33846371109 scopus 로고    scopus 로고
    • Modeling geophysical complexity: A case for geometric determinism
    • Puente, C. E., and B. Sivakumar (2007), Modeling geophysical complexity: A case for geometric determinism, Hydrol. Earth Syst. Sci., 11, 721-724.
    • (2007) Hydrol. Earth Syst. Sci. , vol.11 , pp. 721-724
    • Puente, C.E.1    Sivakumar, B.2
  • 44
    • 20444497873 scopus 로고    scopus 로고
    • Using Bayesian model averaging to calibrate forecast ensembles
    • DOI 10.1175/MWR2906.1
    • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski (2005), Using Bayesian model averaging to calibrate forecast ensembles, Mon. Weather Rev., 133, 1155-1174, doi:10.1175/MWR2906.1. (Pubitemid 40829946)
    • (2005) Monthly Weather Review , vol.133 , Issue.5 , pp. 1155-1174
    • Raftery, A.E.1    Gneiting, T.2    Balabdaoui, F.3    Polakowski, M.4
  • 45
    • 33748416660 scopus 로고    scopus 로고
    • A framework for dealing with uncertainty due to model structure error
    • DOI 10.1016/j.advwatres.2005.11.013, PII S0309170805002903
    • Refsgaard, J. C., J. P. van der Sluijs, J. Brown, and P. van der Keur (2006), A framework for dealing with uncertainty due to model structure error, Adv. Water Resour., 29(11), 1586-1597, doi:10.1016/j.advwatres.2005.11.013. (Pubitemid 44341076)
    • (2006) Advances in Water Resources , vol.29 , Issue.11 , pp. 1586-1597
    • Refsgaard, J.C.1    Van Der Sluijs, J.P.2    Brown, J.3    Van Der Keur, P.4
  • 46
  • 47
    • 70349291168 scopus 로고    scopus 로고
    • Model complexity control for hydrologic prediction
    • doi:10.1029/2008WR006836
    • Schoups, G., N. C. van de Giesen, and H. H. G. Savenije (2008), Model complexity control for hydrologic prediction, Water Resour. Res., 44, W00B03, doi:10.1029/2008WR006836.
    • (2008) Water Resour. Res. , vol.44
    • Schoups, G.1    Van De Giesen, N.C.2    Savenije, H.H.G.3
  • 48
    • 0034241362 scopus 로고    scopus 로고
    • Measuring the VC-dimension using optimized experimental design
    • doi:10.1162/089976600300015222
    • Shao, X., and V. Cherkasky (2000), Measuring the VC-dimension using optimized experimental design, Neural Comput., 12(8), 1969-1986, doi:10.1162/089976600300015222.
    • (2000) Neural Comput. , vol.12 , Issue.8 , pp. 1969-1986
    • Shao, X.1    Cherkasky, V.2
  • 49
    • 0030619326 scopus 로고    scopus 로고
    • Streamflow simulation: A non-parametric approach
    • doi:10.1029/96WR02839
    • Sharma, A., D. Tarboton, and U. Lall (1997), Streamflow simulation: A non-parametric approach, Water Resour. Res., 33(2), 291-308, doi:10.1029/96WR02839.
    • (1997) Water Resour. Res. , vol.33 , Issue.2 , pp. 291-308
    • Sharma, A.1    Tarboton, D.2    Lall, U.3
  • 50
    • 27644534911 scopus 로고    scopus 로고
    • Probabilistic nonlinear prediction of river flows
    • DOI 10.1029/2005WR004136, W09421
    • Tamea, S., F. Laio, and L. Ridolfi (2005), Probabilistic nonlinear prediction of river flows, Water Resour. Res., 41, W09421, doi:10.1029/ 2005WR004136. (Pubitemid 41552207)
    • (2005) Water Resources Research , vol.41 , Issue.9 , pp. 1-9
    • Tamea, S.1    Laio, F.2    Ridolfi, L.3
  • 52
    • 0037428037 scopus 로고    scopus 로고
    • Application of hydrological models with increasing complexity to subarctic catchments
    • DOI 10.1016/S0022-1694(02)00291-3, PII S0022169402002913
    • van der Linden, S., and M.-K. Woo (2003), Application of hydrological models with increasing complexity to subarctic catchments, J. Hydrol., 270, 145-157, doi:10.1016/S0022-1694(02)00291-3. (Pubitemid 36093351)
    • (2003) Journal of Hydrology , vol.270 , Issue.1-2 , pp. 145-157
    • Van Der Linden, S.1    Woo, M.-K.2
  • 53
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • doi:10.1109/72.788640
    • Vapnik, V. N. (1999), An overview of statistical learning theory, IEEE Trans. Neural Networks, 10(5), 988-999, doi:10.1109/72.788640.
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 55
    • 0001024505 scopus 로고
    • On uniform convergence of relative frequencies of events to their probabilities
    • doi:10.1137/1116025
    • Vapnik, V., and A. Chervonenkis (1971), On uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl., 16(2), 264-280, doi:10.1137/1116025.
    • (1971) Theory Probab. Appl. , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.1    Chervonenkis, A.2
  • 56
    • 0000864140 scopus 로고
    • The necessary and sufficient conditions for consistency in the empirical risk minimization method
    • Vapnik, V., and A. Y. Chervonenkis (1991), The necessary and sufficient conditions for consistency in the empirical risk minimization method, Pattern Recognition Image Anal., 1(3), 283-305.
    • (1991) Pattern Recognition Image Anal. , vol.1 , Issue.3 , pp. 283-305
    • Vapnik, V.1    Chervonenkis, A.Y.2
  • 57
    • 0001205879 scopus 로고
    • Measuring the VC dimension of a learning machine
    • doi:10.1162/neco.1994.6.5.851
    • Vapnik, V., E. Levin, and Y. LeCun (1994), Measuring the VC dimension of a learning machine, Neural Comput., 6(5), 851-876, doi:10.1162/neco.1994.6.5. 851.
    • (1994) Neural Comput. , vol.6 , Issue.5 , pp. 851-876
    • Vapnik, V.1    Levin, E.2    Lecun, Y.3
  • 59
    • 1542442237 scopus 로고    scopus 로고
    • Effective and efficient algorithm for multiobjective optimization of hydrologic models
    • doi:10.1029/2002WR001746
    • Vrugt, J. A., H. V. Gupta, L. A. Bastidas, W. Bouten, and S. Sorooshian (2003a), Effective and efficient algorithm for multiobjective optimization of hydrologic models, Water Resour. Res., 39(8), 1214, doi:10.1029/2002WR001746.
    • (2003) Water Resour. Res. , vol.39 , Issue.8 , pp. 1214
    • Vrugt, J.A.1    Gupta, H.V.2    Bastidas, L.A.3    Bouten, W.4    Sorooshian, S.5
  • 60
    • 1542757127 scopus 로고    scopus 로고
    • A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters
    • doi:10.1029/2002WR001642
    • Vrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian (2003b), A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39(8), 1201, doi:10.1029/2002WR001642.
    • (2003) Water Resour. Res. , vol.39 , Issue.8 , pp. 1201
    • Vrugt, J.A.1    Gupta, H.V.2    Bouten, W.3    Sorooshian, S.4
  • 61
    • 27744595678 scopus 로고    scopus 로고
    • Improved inverse modeling for flow and transport in subsurface media: Combined parameter and state estimation
    • DOI 10.1029/2005GL023940, L18408
    • Vrugt, J. A., B. A. Robinson, and V. V. Vesselinov (2005), Improved inverse modeling for flow and transport in subsurface media: Combined parameter and state estimation, Geophys. Res. Lett., 32, L18408, doi:10.1029/2005GL023940. (Pubitemid 41582567)
    • (2005) Geophysical Research Letters , vol.32 , Issue.18 , pp. 1-5
    • Vrugt, J.A.1    Robinson, B.A.2    Vesselinov, V.V.3
  • 62
    • 29144451373 scopus 로고    scopus 로고
    • Model identification for hydrological forecasting under uncertainty
    • DOI 10.1007/s00477-005-0006-5
    • Wagener, T., and H. V. Gupta (2005), Model identification for hydrological forecasting under uncertainty, Stochastic Environ. Res. Risk Assess., 19(6), 378-387, doi:10.1007/s00477-005-0006-5. (Pubitemid 41801064)
    • (2005) Stochastic Environmental Research and Risk Assessment , vol.19 , Issue.6 , pp. 378-387
    • Wagener, T.1    Gupta, H.V.2
  • 63
    • 0001207364 scopus 로고
    • Nearest neighbor regression estimation for nullrecurrent Markov time series
    • doi:10.1016/0304-4149(93)90050-E
    • Yakowitz, S. (1993), Nearest neighbor regression estimation for nullrecurrent Markov time series, Stochastic Processes Appl., 48, 311-318, doi:10.1016/0304-4149(93)90050-E.
    • (1993) Stochastic Processes Appl. , vol.48 , pp. 311-318
    • Yakowitz, S.1
  • 64
    • 0032579570 scopus 로고    scopus 로고
    • Multi-objective global optimization for hydrologic models
    • DOI 10.1016/S0022-1694(97)00107-8, PII S0022169497001078
    • Yapo, P. O., H. V. Gupta, and S. Sorooshian (1998), Multi-objective global optimization for hydrologic models, J. Hydrol., 204(1-4), 83-97, doi:10.1016/S0022-1694(97)00107-8. (Pubitemid 28159052)
    • (1998) Journal of Hydrology , vol.204 , Issue.1-4 , pp. 83-97
    • Yapo, P.O.1    Gupta, H.V.2    Sorooshian, S.3
  • 65
    • 0030464374 scopus 로고    scopus 로고
    • Simplicity out of complexity in environmental modelling: Occam's razor revisited
    • Young, P., S. Parkinson, and M. J. Lees (1996), Simplicity out of complexity in environmental modelling: Occam's razor revisited, J. Appl. Stat., 23(2-3), 165-210.
    • (1996) J. Appl. Stat. , vol.23 , Issue.2-3 , pp. 165-210
    • Young, P.1    Parkinson, S.2    Lees, M.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.