메뉴 건너뛰기




Volumn 5828 LNAI, Issue , 2009, Pages 65-81

Conditional density estimation with class probability estimators

Author keywords

[No Author keywords available]

Indexed keywords

CLASS PROBABILITIES; CONDITIONAL DENSITY; CONFIDENCE LEVELS; DENSITY ESTIMATOR; GAUSSIAN PROCESS REGRESSION; HISTOGRAM ESTIMATOR; KERNEL ESTIMATORS; LOG LIKELIHOOD; NON-PARAMETRIC; POINT ESTIMATE; POINT ESTIMATION; PREDICTION INTERVAL; QUANTILE ESTIMATION; UNIVARIATE;

EID: 70649114543     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-05224-8_7     Document Type: Conference Paper
Times cited : (30)

References (21)
  • 7
    • 0030585112 scopus 로고    scopus 로고
    • Using neural networks to model conditional multivariate densities
    • Williams, P.M.: Using neural networks to model conditional multivariate densities. Neural Computation 8(4), 843-854 (1996)
    • (1996) Neural Computation , vol.8 , Issue.4 , pp. 843-854
    • Williams, P.M.1
  • 9
    • 31844441345 scopus 로고    scopus 로고
    • Predicting probability distributions for surf height using an ensemble of mixture density networks
    • ACM Press, New York
    • Carney, M., Pádraig Cunningham, J.D., Lee, C.: Predicting probability distributions for surf height using an ensemble of mixture density networks. In: Proc. 22nd Int. Conf. on Machine learning, pp. 113-120. ACM Press, New York (2005)
    • (2005) Proc. 22nd Int. Conf. on Machine learning , pp. 113-120
    • Carney, M.1    Pádraig Cunningham, J.D.2    Lee, C.3
  • 10
    • 33746096983 scopus 로고    scopus 로고
    • Numerical method for estimating multivariate conditional distributions
    • Stützle, E., Hrycej, T.: Numerical method for estimating multivariate conditional distributions. Computational Statistics 20(1), 151-176 (2005)
    • (2005) Computational Statistics , vol.20 , Issue.1 , pp. 151-176
    • Stützle, E.1    Hrycej, T.2
  • 11
    • 33750354909 scopus 로고    scopus 로고
    • Carney, M., Cunningham, P.: Making good probability estimates for regression. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), 4212, pp. 582-589. Springer, Heidelberg (2006)
    • Carney, M., Cunningham, P.: Making good probability estimates for regression. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 582-589. Springer, Heidelberg (2006)
  • 12
    • 84886053481 scopus 로고    scopus 로고
    • Calibrating probability density forecasts with multi-objective search
    • IOS Press, Amsterdam
    • Carney, M., Cunningham, P.: Calibrating probability density forecasts with multi-objective search. In: Proc. 17th Europ. Conf. on AI, pp. 791-792. IOS Press, Amsterdam (2006)
    • (2006) Proc. 17th Europ. Conf. on AI , pp. 791-792
    • Carney, M.1    Cunningham, P.2
  • 13
    • 33644856982 scopus 로고    scopus 로고
    • Interpolating conditional density trees
    • Morgan Kaufmann, San Francisco
    • Davies, S., Moore, A.: Interpolating conditional density trees. In: Proc. 18th Annual Conf. on Uncertainty in AI, pp. 119-127. Morgan Kaufmann, San Francisco (2002)
    • (2002) Proc. 18th Annual Conf. on Uncertainty in AI , pp. 119-127
    • Davies, S.1    Moore, A.2
  • 15
    • 27444435127 scopus 로고    scopus 로고
    • Modeling auction price uncertainty using boosting-based conditional density estimation
    • Morgan Kaufmann, San Francisco
    • Schapire, R.E., Stone, P., McAllester, D.A., Littman, M.L., Csirik, J.: Modeling auction price uncertainty using boosting-based conditional density estimation. In: Proc. 19th Int. Conf. on Machine Learning, pp. 546-553. Morgan Kaufmann, San Francisco (2002)
    • (2002) Proc. 19th Int. Conf. on Machine Learning , pp. 546-553
    • Schapire, R.E.1    Stone, P.2    McAllester, D.A.3    Littman, M.L.4    Csirik, J.5
  • 16
    • 0042850809 scopus 로고    scopus 로고
    • A note on kernel density estimators with optimal band-widths
    • Hjort, N.L., Walker, S.G.: A note on kernel density estimators with optimal band-widths. Statistics & Probability Letters 54, 153-159 (2001)
    • (2001) Statistics & Probability Letters , vol.54 , pp. 153-159
    • Hjort, N.L.1    Walker, S.G.2
  • 17
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • MIT Press, Cambridge
    • Platt, J.C.: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61-74. MIT Press, Cambridge (1999)
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 18
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau, C., Bengio, Y.: Inference for the generalization error. Machine Learning 52, 239-281 (2003)
    • (2003) Machine Learning , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 19
    • 84948166287 scopus 로고    scopus 로고
    • Frank, E., Hall, M.: A simple approach to ordinal classification. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), 2167, pp. 145-156. Springer, Heidelberg (2001)
    • Frank, E., Hall, M.: A simple approach to ordinal classification. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 145-156. Springer, Heidelberg (2001)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.