메뉴 건너뛰기




Volumn 20, Issue 1, 2005, Pages 151-176

Numerical method for estimating multivariate conditional distributions

Author keywords

Conditional Probability Distributions; Global Optimization; Neural Networks

Indexed keywords


EID: 33746096983     PISSN: 09434062     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF02736128     Document Type: Article
Times cited : (5)

References (31)
  • 1
    • 0002016642 scopus 로고
    • On least squares and linear compbinations of observations
    • Aitken, A. (1935). On least squares and linear compbinations of observations. Proceedings of the Royal Statistical Society, 55:42-48.
    • (1935) Proceedings of the Royal Statistical Society , vol.55 , pp. 42-48
    • Aitken, A.1
  • 4
    • 0001263851 scopus 로고    scopus 로고
    • Modelling conditional probability distributions for periodic variables
    • Bishop, C. M. and Nabney, I. T. (1996). Modelling conditional probability distributions for periodic variables. Neural Computation, 8:1123-1133.
    • (1996) Neural Computation , vol.8 , pp. 1123-1133
    • Bishop, C.M.1    Nabney, I.T.2
  • 6
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31:307-327.
    • (1986) Journal of Econometrics , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 7
    • 0038256442 scopus 로고    scopus 로고
    • The generalized hyperbolic model: Financial derivatives and risk measures
    • Eberlein, E. and Prause, K. (2000). The generalized hyperbolic model: financial derivatives and risk measures. Mathematical Finance.
    • (2000) Mathematical Finance
    • Eberlein, E.1    Prause, K.2
  • 8
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation
    • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica, 50(4):987-1007.
    • (1982) Econometrica , vol.50 , Issue.4 , pp. 987-1007
    • Engle, R.F.1
  • 11
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks, 2(3):183-192.
    • (1989) Neural Networks , vol.2 , Issue.3 , pp. 183-192
    • Funahashi, K.1
  • 13
    • 0001248728 scopus 로고
    • Distribution theory of spherical distributions and a location-scale parameter
    • Kelker, D. (1970). Distribution theory of spherical distributions and a location-scale parameter. Sankhya, A, 32:419-430.
    • (1970) Sankhya, A , vol.32 , pp. 419-430
    • Kelker, D.1
  • 20
    • 0001473437 scopus 로고
    • On estimation of probability density function and mode
    • Parzen, E. (1962). On estimation of probability density function and mode. Ann. Math. Stat., 35:1065-1076.
    • (1962) Ann. Math. Stat. , vol.35 , pp. 1065-1076
    • Parzen, E.1
  • 21
    • 0004030839 scopus 로고
    • A theory of networks for approximation and learning
    • MIT Artificial Intelligence Laboratory
    • Poggio, T. and Girosi, F. (1989). A theory of networks for approximation and learning. Technical Report Memo No. 1140, MIT Artificial Intelligence Laboratory.
    • (1989) Technical Report Memo No. 1140 , vol.1140
    • Poggio, T.1    Girosi, F.2
  • 23
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the em algorithm
    • Redner, R. and Walker, H. (1984). Mixture densities, maximum likelihood and the em algorithm. SIAM Review, 26.
    • (1984) SIAM Review , pp. 26
    • Redner, R.1    Walker, H.2
  • 24
    • 0002896913 scopus 로고
    • Stochastic global optimization methods, part i: Clustering methods, part ii: Multi-level methods
    • Rinnooy Kan, A. and Timmer, G. (1987). Stochastic global optimization methods, part i: Clustering methods, part ii: Multi-level methods. Mathematical Programming, 39(1):26-78.
    • (1987) Mathematical Programming , vol.39 , Issue.1 , pp. 26-78
    • Rinnooy Kan, A.1    Timmer, G.2
  • 25
    • 0003444646 scopus 로고
    • Rumelhart, D. and McClelland, J., editors. MIT Press, Cambridge
    • Rumelhart, D. and McClelland, J., editors (1986). Parallel Distributed Processing, volume 1. MIT Press, Cambridge.
    • (1986) Parallel Distributed Processing , vol.1
  • 26
    • 0001344388 scopus 로고    scopus 로고
    • Forecasting time-dependent conditional densities: A neural network approach
    • Schittenkopf, C., Dorffher, G., and Dockner, E. J. (2000). Forecasting time-dependent conditional densities: A neural network approach. Journal of Forecasting, 19(4):355-374.
    • (2000) Journal of Forecasting , vol.19 , Issue.4 , pp. 355-374
    • Schittenkopf, C.1    Dorffher, G.2    Dockner, E.J.3
  • 29
    • 0003188086 scopus 로고    scopus 로고
    • Predicting daily probability distributions of s&p500 returns
    • Weigend, A. S. and Shi, S. (2000). Predicting daily probability distributions of s&p500 returns. Journal of Forecasting, 19(4):375-392.
    • (2000) Journal of Forecasting , vol.19 , Issue.4 , pp. 375-392
    • Weigend, A.S.1    Shi, S.2
  • 30
    • 0030585112 scopus 로고    scopus 로고
    • Using neuronal networks to model conditional multivariate densities
    • Williams, P. M. (1996a). Using neuronal networks to model conditional multivariate densities. Neural Computation, 8:843-854.
    • (1996) Neural Computation , vol.8 , pp. 843-854
    • Williams, P.M.1
  • 31
    • 0030585112 scopus 로고    scopus 로고
    • Using neuronal networks to model conditional multjvariate densities
    • Williams, P. M. (1996b). Using neuronal networks to model conditional multjvariate densities. Neural Computation, 8:843-854.
    • (1996) Neural Computation , vol.8 , pp. 843-854
    • Williams, P.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.