메뉴 건너뛰기




Volumn , Issue , 2009, Pages 30-37

Lazy naive credal classifier

Author keywords

Imprecise probabilities; Lazy credal classifier; Naive credal classifier

Indexed keywords

IMPRECISE PROBABILITIES; LOCAL CLASSIFIER; LOCAL VERSIONS; NAIVE BAYES; NAIVE CREDAL CLASSIFIERS; UNCERTAIN INFORMATIONS;

EID: 70549113216     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1610555.1610560     Document Type: Conference Paper
Times cited : (24)

References (15)
  • 2
    • 58149287953 scopus 로고    scopus 로고
    • JNCC2: The Java Implementation Of Naive Credal Classifier 2
    • G. Corani and M. Zaffalon. JNCC2: The Java Implementation Of Naive Credal Classifier 2. Journal of Machine Learning Research, 9:2695-2698, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2695-2698
    • Corani, G.1    Zaffalon, M.2
  • 3
    • 44649172521 scopus 로고    scopus 로고
    • Learning reliable classifiers from small or incomplete data sets: The naive credal classifier 2
    • G. Corani and M. Zaffalon. Learning reliable classifiers from small or incomplete data sets: The naive credal classifier 2. Journal of Machine Learning Research, 9:581-621, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 581-621
    • Corani, G.1    Zaffalon, M.2
  • 4
    • 33750156524 scopus 로고    scopus 로고
    • Socr: Statistics online computational resource
    • 1611
    • I. D. Dinov. Socr: Statistics online computational resource. Journal of Statistical Software, 16(11):1-16, 10 2006.
    • (2006) Journal of Statistical Software , vol.1-16 , pp. 10
    • Dinov, I.D.1
  • 5
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2/3):103-130, 1997.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 6
    • 0002593344 scopus 로고
    • Multi-interval Discretization of Continuous-valued Attributes for Classification Learning
    • San Francisco, CA, Morgan Kaufmann
    • U. M. Fayyad and K. B. Irani. Multi-interval Discretization of Continuous-valued Attributes for Classification Learning. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, pages 1022-1027, San Francisco, CA, 1993. Morgan Kaufmann.
    • (1993) Proceedings of the 13th International Joint Conference on Artificial Intelligence , pp. 1022-1027
    • Fayyad, U.M.1    Irani, K.B.2
  • 8
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1 - loss, and the curse-of- dimensionality
    • J. Friedman. On bias, variance, 0/1 - loss, and the curse-of- dimensionality. Data Mining and Knowledge Discovery, 1:55-77, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.1
  • 10
    • 38049123909 scopus 로고    scopus 로고
    • Random k-Labelsets: An Ensemble Method for Multilabel Classification
    • Springer-Verlag Berlin, Heidelberg
    • G. Tsoumakas and I. Vlahavas. Random k-Labelsets: An Ensemble Method for Multilabel Classification. In Proceedings of the 18th European conference on Machine Learning, pages 406-417. Springer-Verlag Berlin, Heidelberg, 2007.
    • (2007) Proceedings of the 18th European conference on Machine Learning , pp. 406-417
    • Tsoumakas, G.1    Vlahavas, I.2
  • 11
    • 3242765279 scopus 로고    scopus 로고
    • A bias-variance analysis of a real world: The CoIL challenge 2000
    • P. Van Der Putten and M. Van Someren. A bias-variance analysis of a real world: the CoIL challenge 2000. Machine Learning, 57:177-195, 2004.
    • (2004) Machine Learning , vol.57 , pp. 177-195
    • Van Der Putten, P.1    Van Someren, M.2
  • 13
    • 0031073477 scopus 로고    scopus 로고
    • A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms
    • D. Wettschereck, D. Aha, and T. Mohri. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review, 11(1):273-314, 1997.
    • (1997) Artificial Intelligence Review , vol.11 , Issue.1 , pp. 273-314
    • Wettschereck, D.1    Aha, D.2    Mohri, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.