-
1
-
-
0031571549
-
d): The analysis of the analysis operator
-
d): The analysis of the analysis operator. J. Funct. Anal. 148 (1997) 408-447
-
(1997)
J. Funct. Anal.
, vol.148
, pp. 408-447
-
-
Ron, A.1
Shen, Z.2
-
2
-
-
0000238947
-
Compactly supported tight frames associated with refinable functions
-
Chui C.K., and He W. Compactly supported tight frames associated with refinable functions. Appl. Comput. Harmon. Anal. 8 (2000) 293-319
-
(2000)
Appl. Comput. Harmon. Anal.
, vol.8
, pp. 293-319
-
-
Chui, C.K.1
He, W.2
-
3
-
-
0242601591
-
Compactly supported tight and sibling frames with maximum vanishing moments
-
Chui C.K., He W., and Stöckler J. Compactly supported tight and sibling frames with maximum vanishing moments. Appl. Comput. Harmon. Anal. 13 (2002) 224-262
-
(2002)
Appl. Comput. Harmon. Anal.
, vol.13
, pp. 224-262
-
-
Chui, C.K.1
He, W.2
Stöckler, J.3
-
5
-
-
11844255668
-
Symmetric MRA tight wavelet frames with three generators and high vanishing moments
-
Han B., and Mo Q. Symmetric MRA tight wavelet frames with three generators and high vanishing moments. Appl. Comput. Harmon. Anal. 18 (2005) 67-93
-
(2005)
Appl. Comput. Harmon. Anal.
, vol.18
, pp. 67-93
-
-
Han, B.1
Mo, Q.2
-
6
-
-
33750686004
-
Construction of multivariate compactly supported tight wavelet frames
-
Lai M.-J., and Stöckler J. Construction of multivariate compactly supported tight wavelet frames. Appl. Comput. Harmon. Anal. 21 (2006) 324-348
-
(2006)
Appl. Comput. Harmon. Anal.
, vol.21
, pp. 324-348
-
-
Lai, M.-J.1
Stöckler, J.2
-
7
-
-
0030371493
-
An algorithm for matrix extension and wavelet construction
-
Lawton W., Lee S.L., and Shen Z. An algorithm for matrix extension and wavelet construction. Math. Comp. 65 (1996) 723-737
-
(1996)
Math. Comp.
, vol.65
, pp. 723-737
-
-
Lawton, W.1
Lee, S.L.2
Shen, Z.3
-
9
-
-
0035276530
-
Smooth wavelet tight frames with zero moments
-
Selesnick I.W. Smooth wavelet tight frames with zero moments. Appl. Comput. Harmonic Anal. 10 (2001) 163-181
-
(2001)
Appl. Comput. Harmonic Anal.
, vol.10
, pp. 163-181
-
-
Selesnick, I.W.1
-
10
-
-
52149095709
-
Tight wavelet frames for subdivision
-
Charina M., and Stöckler J. Tight wavelet frames for subdivision. J. Comput. Appl. Math. 221 (2008) 293-301
-
(2008)
J. Comput. Appl. Math.
, vol.221
, pp. 293-301
-
-
Charina, M.1
Stöckler, J.2
-
11
-
-
64049117841
-
Constructing tight frames of multivariate functions
-
Goh S.S., Goodman T.N.T., and Lee S.L. Constructing tight frames of multivariate functions. J. Approx. Theory 158 (2009) 49-68
-
(2009)
J. Approx. Theory
, vol.158
, pp. 49-68
-
-
Goh, S.S.1
Goodman, T.N.T.2
Lee, S.L.3
-
12
-
-
4344660740
-
Nonstationary tight wavelet frames, I: Bounded intervals
-
Chui C.K., He W., and Stöckler J. Nonstationary tight wavelet frames, I: Bounded intervals. Appl. Comput. Harmon. Anal. 17 (2004) 141-197
-
(2004)
Appl. Comput. Harmon. Anal.
, vol.17
, pp. 141-197
-
-
Chui, C.K.1
He, W.2
Stöckler, J.3
-
13
-
-
11844278221
-
Nonstationary tight wavelet frames, II: Unbounded intervals
-
Chui C.K., He W., and Stöckler J. Nonstationary tight wavelet frames, II: Unbounded intervals. Appl. Comput. Harmon. Anal. 18 (2005) 25-66
-
(2005)
Appl. Comput. Harmon. Anal.
, vol.18
, pp. 25-66
-
-
Chui, C.K.1
He, W.2
Stöckler, J.3
-
14
-
-
48349147186
-
Extension principles for tight wavelet frames of periodic functions
-
Goh S.S., and Teo K.M. Extension principles for tight wavelet frames of periodic functions. Appl. Comput. Harmon. Anal. 25 (2008) 168-186
-
(2008)
Appl. Comput. Harmon. Anal.
, vol.25
, pp. 168-186
-
-
Goh, S.S.1
Teo, K.M.2
-
15
-
-
0037212169
-
Multiwavelet frames from refinable function vectors
-
Han B., and Mo Q. Multiwavelet frames from refinable function vectors. Adv. Comput. Math. 18 (2003) 211-245
-
(2003)
Adv. Comput. Math.
, vol.18
, pp. 211-245
-
-
Han, B.1
Mo, Q.2
-
16
-
-
0033700544
-
A new subdivision method for bivariate splines on four-directional mesh
-
Conti C., and Jetter K. A new subdivision method for bivariate splines on four-directional mesh. J. Comput. Appl. Math. 119 (2000) 81-96
-
(2000)
J. Comput. Appl. Math.
, vol.119
, pp. 81-96
-
-
Conti, C.1
Jetter, K.2
-
17
-
-
2342595479
-
A note on convolving refinable function vectors
-
Cohen A., Rabut Ch., and Schumaker L.L. (Eds), Vanderbilt University Press, Nashville
-
Conti C., and Jetter K. A note on convolving refinable function vectors. In: Cohen A., Rabut Ch., and Schumaker L.L. (Eds). Curve and Surface Fitting: Saint-Malo 1999 (2000), Vanderbilt University Press, Nashville 135-142
-
(2000)
Curve and Surface Fitting: Saint-Malo 1999
, pp. 135-142
-
-
Conti, C.1
Jetter, K.2
-
19
-
-
0037971977
-
sqrt(3)-subdivision schemes: Maximal sum rules orders
-
Jiang Q., Oswald P., and Riemenschneider S. sqrt(3)-subdivision schemes: Maximal sum rules orders. Constr. Approx. 19 (2008) 437-463
-
(2008)
Constr. Approx.
, vol.19
, pp. 437-463
-
-
Jiang, Q.1
Oswald, P.2
Riemenschneider, S.3
-
20
-
-
0346849805
-
Surface subdivision schemes generated by refinable bivariate spline function vectors
-
Chui C.K., and Jiang Q. Surface subdivision schemes generated by refinable bivariate spline function vectors. Appl. Comput. Harmon. Anal. 15 (2003) 147-162
-
(2003)
Appl. Comput. Harmon. Anal.
, vol.15
, pp. 147-162
-
-
Chui, C.K.1
Jiang, Q.2
-
21
-
-
70450252321
-
-
M. Charina, J. Stöckler, Construction of tight wavelet frames by semi-definite programming, Report #361, Institut für Angewandte Mathematik, Universität Dortmund, 2008
-
M. Charina, J. Stöckler, Construction of tight wavelet frames by semi-definite programming, Report #361, Institut für Angewandte Mathematik, Universität Dortmund, 2008
-
-
-
-
22
-
-
5644297306
-
Multivariate refinable Hermite interpolants
-
Han B., Yu T., and Piper B. Multivariate refinable Hermite interpolants. Math. Comp. 73 (2004) 1913-1935
-
(2004)
Math. Comp.
, vol.73
, pp. 1913-1935
-
-
Han, B.1
Yu, T.2
Piper, B.3
|