-
2
-
-
0002786665
-
Spline approximation by quasi-interpolants
-
de Boor C., Fix G.J. Spline approximation by quasi-interpolants. J. Approx. Theory. 8:1973;19-45.
-
(1973)
J. Approx. Theory
, vol.8
, pp. 19-45
-
-
De Boor, C.1
Fix, G.J.2
-
5
-
-
1642599425
-
Spline-wavelets with arbitrary knots on a bounded interval: Orthogonal decomposition and computational algorithms
-
Chui C.K., De Villiers J.M. Spline-wavelets with arbitrary knots on a bounded interval: Orthogonal decomposition and computational algorithms. Commun. Appl. Anal. 2:(4):1998;457-486.
-
(1998)
Commun. Appl. Anal.
, vol.2
, Issue.4
, pp. 457-486
-
-
Chui, C.K.1
De Villiers, J.M.2
-
6
-
-
0000238947
-
Compactly supported tight frames associated with refinable functions
-
Chui C.K., He W. Compactly supported tight frames associated with refinable functions. Appl. Comput. Harmon. Anal. 8:2000;293-319.
-
(2000)
Appl. Comput. Harmon. Anal.
, vol.8
, pp. 293-319
-
-
Chui, C.K.1
He, W.2
-
7
-
-
0242601591
-
Compactly supported tight and sibling frames with maximum vanishing moments
-
Chui C.K., He W., Stöckler J. Compactly supported tight and sibling frames with maximum vanishing moments. Appl. Comput. Harmon. Anal. 13:2002;224-262.
-
(2002)
Appl. Comput. Harmon. Anal.
, vol.13
, pp. 224-262
-
-
Chui, C.K.1
He, W.2
Stöckler, J.3
-
8
-
-
85057633541
-
Nonstationary tight wavelet frames, II: Unbounded intervals
-
submitted for publication
-
C.K. Chui, W. He, J. Stöckler, Nonstationary tight wavelet frames, II: unbounded intervals, Appl. Comput. Harmon. Anal., submitted for publication.
-
Appl. Comput. Harmon. Anal.
-
-
Chui, C.K.1
He, W.2
Stöckler, J.3
-
9
-
-
0037212665
-
Compactly supported tight affine frames with integer dilations and maximum vanishing moments
-
Chui C.K., He W., Stöckler J., Sun Q. Compactly supported tight affine frames with integer dilations and maximum vanishing moments. Adv. Comput. Math. 18:2003;159-187.
-
(2003)
Adv. Comput. Math.
, vol.18
, pp. 159-187
-
-
Chui, C.K.1
He, W.2
Stöckler, J.3
Sun, Q.4
-
10
-
-
4344613417
-
Nonstationary wavelets and refinement sequences of nonuniform B -splines
-
C.K. Chui, L.L. Schumaker, & J. Stöckler. Vanderbilt Univ. Press
-
Chui C.K., Lian J.A. Nonstationary wavelets and refinement sequences of nonuniform B -splines. Chui C.K., Schumaker L.L., Stöckler J. Approximation Theory X: Wavelets, Splines, and Applications. 2001;207-229 Vanderbilt Univ. Press.
-
(2001)
Approximation Theory X: Wavelets, Splines, and Applications
, pp. 207-229
-
-
Chui, C.K.1
Lian, J.A.2
-
11
-
-
77956687293
-
Recent development of spline-wavelet frames with compact support
-
G.V. Welland. Elsevier
-
Chui C.K., Stöckler J. Recent development of spline-wavelet frames with compact support. Welland G.V. Beyond Wavelets. 2003;151-214 Elsevier.
-
(2003)
Beyond Wavelets
, pp. 151-214
-
-
Chui, C.K.1
Stöckler, J.2
-
12
-
-
34250103999
-
The B -spline basis in a space of algebraic polynomials
-
Ciesielski Z. The B -spline basis in a space of algebraic polynomials. Ukrainian Math. J. 38:1986;311-315.
-
(1986)
Ukrainian Math. J.
, vol.38
, pp. 311-315
-
-
Ciesielski, Z.1
-
15
-
-
21344483562
-
Banded matrices with banded inverses, II: Locally finite decomposition of spline spaces
-
Dahmen W., Micchelli C.A. Banded matrices with banded inverses, II: Locally finite decomposition of spline spaces. Constr. Approx. 9:1993;263-281.
-
(1993)
Constr. Approx.
, vol.9
, pp. 263-281
-
-
Dahmen, W.1
Micchelli, C.A.2
-
16
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
Daubechies I. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41:1988;909-996.
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
22
-
-
0344465816
-
An identity for multivariate Bernstein polynomials
-
Jetter K., Stöckler J. An identity for multivariate Bernstein polynomials. Comput. Aided Geom. Design. 20:2003;563-577.
-
(2003)
Comput. Aided Geom. Design
, vol.20
, pp. 563-577
-
-
Jetter, K.1
Stöckler, J.2
-
23
-
-
4344586188
-
-
Preprint 242, University of Dortmund, Dept. of Mathematics, November
-
K. Jetter, J. Stöckler, New polynomial preserving operators on simplices, Preprint 242, University of Dortmund, Dept. of Mathematics, November 2003.
-
(2003)
New Polynomial Preserving Operators on Simplices
-
-
Jetter, K.1
Stöckler, J.2
-
25
-
-
22044449725
-
The dual basis functions for the Bernstein polynomials
-
Jüttler B. The dual basis functions for the Bernstein polynomials. Adv. Comput. Math. 8:1998;345-352.
-
(1998)
Adv. Comput. Math.
, vol.8
, pp. 345-352
-
-
Jüttler, B.1
-
26
-
-
84919336823
-
-
Ph.D. thesis, Dept. of Mathematics and Statistical Sciences, University of Alberta, Edmonton
-
Q. Mo, Compactly supported symmetric MRA wavelet frames, Ph.D. thesis, Dept. of Mathematics and Statistical Sciences, University of Alberta, Edmonton, 2003.
-
(2003)
Compactly Supported Symmetric MRA Wavelet Frames
-
-
Mo, Q.1
-
28
-
-
0031571549
-
d): The analysis of the analysis operator
-
d): The analysis of the analysis operator. J. Funct. Anal. 148:(2):1997;408-447.
-
(1997)
J. Funct. Anal.
, vol.148
, Issue.2
, pp. 408-447
-
-
Ron, A.1
Shen, Z.W.2
-
30
-
-
51249163784
-
Spline integral operators exact on polynomials
-
Sablonnière P., Sbibih D. Spline integral operators exact on polynomials. Approx. Theory Appl. 10:1994;56-73.
-
(1994)
Approx. Theory Appl.
, vol.10
, pp. 56-73
-
-
Sablonnière, P.1
Sbibih, D.2
-
31
-
-
51249190503
-
On Pólya frequency functions IV: The fundamental spline functions and their limits
-
Schoenberg I.J., Curry H.B. On Pólya frequency functions IV: The fundamental spline functions and their limits. J. Anal. Math. 17:1966;71-107.
-
(1966)
J. Anal. Math.
, vol.17
, pp. 71-107
-
-
Schoenberg, I.J.1
Curry, H.B.2
-
33
-
-
0039304058
-
2 -spline projector is bounded independently of the knot sequence: A proof of de Boor's conjecture
-
2 -spline projector is bounded independently of the knot sequence: A proof of de Boor's conjecture. Acta Math. 187:2001;59-137.
-
(2001)
Acta Math.
, vol.187
, pp. 59-137
-
-
Shadrin, A.1
-
34
-
-
0027831822
-
Dual bases of a Bernstein polynomial basis on simplices
-
Wu D.B. Dual bases of a Bernstein polynomial basis on simplices. Comput. Aided Geom. Design. 10:1993;483-489.
-
(1993)
Comput. Aided Geom. Design
, vol.10
, pp. 483-489
-
-
Wu, D.B.1
|