-
1
-
-
0347486142
-
The theory of multiresolution analysis frames and applications to filter banks
-
J.J. Benedetto, and S. Li The theory of multiresolution analysis frames and applications to filter banks Appl. Comput. Harmon. Anal. 5 1998 389 427
-
(1998)
Appl. Comput. Harmon. Anal.
, vol.5
, pp. 389-427
-
-
Benedetto, J.J.1
Li, S.2
-
2
-
-
0000238947
-
Compactly supported tight frames associated with refinable functions
-
C.K. Chui, and W. He Compactly supported tight frames associated with refinable functions Appl. Comput. Harmon. Anal. 8 2000 293 319
-
(2000)
Appl. Comput. Harmon. Anal.
, vol.8
, pp. 293-319
-
-
Chui, C.K.1
He, W.2
-
3
-
-
0242601591
-
Compactly supported tight and sibling frames with maximum vanishing moments
-
C.K. Chui, W. He, and J. Stöckler Compactly supported tight and sibling frames with maximum vanishing moments Appl. Comput. Harmon. Anal. 13 2002 224 262
-
(2002)
Appl. Comput. Harmon. Anal.
, vol.13
, pp. 224-262
-
-
Chui, C.K.1
He, W.2
Stöckler, J.3
-
4
-
-
0037212665
-
Compactly supported tight affine frames with integer dilations and maximum vanishing moments
-
C.K. Chui, W. He, J. Stöckler, and Q.Y. Sun Compactly supported tight affine frames with integer dilations and maximum vanishing moments Adv. Comput. Math. 18 2003 159 187
-
(2003)
Adv. Comput. Math.
, vol.18
, pp. 159-187
-
-
Chui, C.K.1
He, W.2
Stöckler, J.3
Sun, Q.Y.4
-
5
-
-
0025482241
-
The wavelet transform, time-frequency localization and signal analysis
-
I. Daubechies The wavelet transform, time-frequency localization and signal analysis IEEE Trans. Inform. Theory 36 1990 961 1005
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, pp. 961-1005
-
-
Daubechies, I.1
-
6
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
I. Daubechies Orthonormal bases of compactly supported wavelets Comm. Pure Appl. Math. 41 1988 909 996
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
8
-
-
4344637345
-
Pairs of dual wavelet frames from any two refinable functions
-
I. Daubechies, and B. Han Pairs of dual wavelet frames from any two refinable functions Constr. Approx. 20 3 2004 325 352
-
(2004)
Constr. Approx.
, vol.20
, Issue.3
, pp. 325-352
-
-
Daubechies, I.1
Han, B.2
-
10
-
-
0038656688
-
Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix
-
B. Han Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix J. Comput. Appl. Math. 155 2003 43 67
-
(2003)
J. Comput. Appl. Math.
, vol.155
, pp. 43-67
-
-
Han, B.1
-
11
-
-
0003006942
-
On dual wavelet tight frames
-
B. Han On dual wavelet tight frames Appl. Comput. Harmon. Anal. 4 1997 380 413
-
(1997)
Appl. Comput. Harmon. Anal.
, vol.4
, pp. 380-413
-
-
Han, B.1
-
13
-
-
0037212169
-
Multiwavelet frames from refinable function vectors
-
B. Han, and Q. Mo Multiwavelet frames from refinable function vectors Adv. Comput. Math. 18 2003 211 245
-
(2003)
Adv. Comput. Math.
, vol.18
, pp. 211-245
-
-
Han, B.1
Mo, Q.2
-
14
-
-
0742324021
-
Tight wavelet frames generated by three symmetric B-spline functions with high vanishing moments
-
B. Han, and Q. Mo Tight wavelet frames generated by three symmetric B-spline functions with high vanishing moments Proc. Amer. Math. Soc. 132 2004 77 86
-
(2004)
Proc. Amer. Math. Soc.
, vol.132
, pp. 77-86
-
-
Han, B.1
Mo, Q.2
-
15
-
-
14544306149
-
Splitting a matrix of Laurent polynomials with symmetry and its application to symmetric framelet filter banks
-
B. Han, and Q. Mo Splitting a matrix of Laurent polynomials with symmetry and its application to symmetric framelet filter banks SIAM J. Matrix Anal. Appl. 26 1 2004 97 124
-
(2004)
SIAM J. Matrix Anal. Appl.
, vol.26
, Issue.1
, pp. 97-124
-
-
Han, B.1
Mo, Q.2
-
17
-
-
84966226919
-
Stability and linear independence associated with wavelet decompositions
-
R.Q. Jia, and J.Z. Wang Stability and linear independence associated with wavelet decompositions Proc. Amer. Math. Soc. 117 1993 1115 1124
-
(1993)
Proc. Amer. Math. Soc.
, vol.117
, pp. 1115-1124
-
-
Jia, R.Q.1
Wang, J.Z.2
-
18
-
-
0037212208
-
Parameterizations of masks for tight affine frames with two symmetric/antisymmetric generators
-
Q.T. Jiang Parameterizations of masks for tight affine frames with two symmetric/antisymmetric generators Adv. Comput. Math. 18 2003 247 268
-
(2003)
Adv. Comput. Math.
, vol.18
, pp. 247-268
-
-
Jiang, Q.T.1
-
19
-
-
0031491554
-
Stability and orthonormality of multivariate refinable functions
-
W. Lawton, S.L. Lee, and Z.W. Shen Stability and orthonormality of multivariate refinable functions SIAM J. Math. Anal. 28 1997 999 1014
-
(1997)
SIAM J. Math. Anal.
, vol.28
, pp. 999-1014
-
-
Lawton, W.1
Lee, S.L.2
Shen, Z.W.3
-
20
-
-
0035448168
-
Explicit construction of framelets
-
A. Petukhov Explicit construction of framelets Appl. Comput. Harmon. Anal. 11 2001 313 327
-
(2001)
Appl. Comput. Harmon. Anal.
, vol.11
, pp. 313-327
-
-
Petukhov, A.1
-
21
-
-
0038238085
-
Symmetric framelets
-
A. Petukhov Symmetric framelets Constr. Approx. 19 2003 309 328
-
(2003)
Constr. Approx.
, vol.19
, pp. 309-328
-
-
Petukhov, A.1
-
22
-
-
0031571549
-
d): The analysis of the analysis operator
-
A. Ron, and Z.W. Shen Affine systems in L 2 (R d): the analysis of the analysis operator J. Funct. Anal. 148 2 1997 408 447
-
(1997)
J. Funct. Anal.
, vol.148
, Issue.2
, pp. 408-447
-
-
Ron, A.1
Shen, Z.W.2
-
23
-
-
0035276530
-
Smooth wavelet tight frames with zero moments
-
I.W. Selesnick Smooth wavelet tight frames with zero moments Appl. Comput. Harmon. Anal. 10 2000 163 181
-
(2000)
Appl. Comput. Harmon. Anal.
, vol.10
, pp. 163-181
-
-
Selesnick, I.W.1
|