메뉴 건너뛰기




Volumn , Issue , 2009, Pages 975-982

Contextual classification with functional max-margin markov networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; LEARNING SYSTEMS; MARKOV PROCESSES; PIXELS;

EID: 70450162267     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2009.5206590     Document Type: Conference Paper
Times cited : (371)

References (29)
  • 2
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. T-PAMI, 23(1), 2001.
    • (2001) T-PAMI , vol.23 , Issue.1
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 3
    • 14344252373 scopus 로고    scopus 로고
    • Training conditional random fields via gradient tree boosting
    • T. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random fields via gradient tree boosting. In ICML, 2004.
    • (2004) ICML
    • Dietterich, T.1    Ashenfelter, A.2    Bulatov, Y.3
  • 4
    • 57649136313 scopus 로고    scopus 로고
    • Volume under the roc surface for multi-class problems
    • C. Ferri, J. Hernandez-Orallo, and M. Salido. Volume under the roc surface for multi-class problems. In ECML, 2003.
    • (2003) ECML
    • Ferri, C.1    Hernandez-Orallo, J.2    Salido, M.3
  • 5
    • 38949112095 scopus 로고    scopus 로고
    • Discriminative learning of max-sum classifiers
    • V. Franc and B. Savchynskyy. Discriminative learning of max-sum classifiers. JMLR, 9(1), 2008.
    • (2008) JMLR , vol.9 , Issue.1
    • Franc, V.1    Savchynskyy, B.2
  • 6
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189-1232, 2001.
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 7
    • 84894167296 scopus 로고    scopus 로고
    • A pac-bayesian margin bound for linear classifiers: Why svms work
    • R. Herbrich and T. Graepel. A pac-bayesian margin bound for linear classifiers: Why svms work. In NIPS, 2001.
    • (2001) NIPS
    • Herbrich, R.1    Graepel, T.2
  • 8
    • 34547216923 scopus 로고    scopus 로고
    • Recovering surface layout from an image
    • D. Hoiem, A. Efros, and M. Hebert. Recovering surface layout from an image. IJCV, 75(1), 2007.
    • (2007) IJCV , vol.75 , Issue.1
    • Hoiem, D.1    Efros, A.2    Hebert, M.3
  • 10
    • 34948905773 scopus 로고    scopus 로고
    • P3 and beyond: Solving energies with higher order cliques
    • P. Kohli, M. Kumar, and P. Torr. P3 and beyond: Solving energies with higher order cliques. In CVPR, 2007.
    • (2007) CVPR
    • Kohli, P.1    Kumar, M.2    Torr, P.3
  • 11
    • 51949098412 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • P. Kohli, L. Ladicky, and P. Torr. Robust higher order potentials for enforcing label consistency. In CVPR, 2008.
    • (2008) CVPR
    • Kohli, P.1    Ladicky, L.2    Torr, P.3
  • 12
    • 50649091044 scopus 로고    scopus 로고
    • Exploiting inference for approximate parameter learning in discriminative fields: An empirical study
    • S. Kumar, J. August, and M. Hebert. Exploiting inference for approximate parameter learning in discriminative fields: An empirical study. In EMMCVPR, 2005.
    • (2005) EMMCVPR
    • Kumar, S.1    August, J.2    Hebert, M.3
  • 13
    • 33646590894 scopus 로고    scopus 로고
    • Discriminative random fields
    • S. Kumar and M. Hebert. Discriminative random fields. IJCV, 2006.
    • (2006) IJCV
    • Kumar, S.1    Hebert, M.2
  • 14
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    Mccallum, A.2    Pereira, F.3
  • 15
    • 84880885580 scopus 로고    scopus 로고
    • Training conditional random fields using virtual evidence boosting
    • L. Liao, T. Choudhury, D. Fox, and H. Kautz. Training conditional random fields using virtual evidence boosting. In IJCAI, 2007.
    • (2007) IJCAI
    • Liao, L.1    Choudhury, T.2    Fox, D.3    Kautz, H.4
  • 16
    • 70450129097 scopus 로고    scopus 로고
    • Directional amn for 3-d point cloud classification
    • D. Munoz, N. Vandapel, and M. Hebert. Directional amn for 3-d point cloud classification. In 3DPVT, 2008.
    • (2008) 3DPVT
    • Munoz, D.1    Vandapel, N.2    Hebert, M.3
  • 17
    • 80053350122 scopus 로고    scopus 로고
    • Onboard contextual classification of 3-d point clouds with learned high-order markov random fields
    • D. Munoz, N. Vandapel, and M. Hebert. Onboard contextual classification of 3-d point clouds with learned high-order markov random fields. In ICRA, 2009.
    • (2009) ICRA
    • Munoz, D.1    Vandapel, N.2    Hebert, M.3
  • 18
    • 67649736232 scopus 로고    scopus 로고
    • Imitation learning for locomotion and manipulation
    • N. Ratliff, J. Bagnell, and S. Srinivasa. Imitation learning for locomotion and manipulation. In Humanoids, 2007.
    • (2007) Humanoids
    • Ratliff, N.1    Bagnell, J.2    Srinivasa, S.3
  • 19
    • 70450140227 scopus 로고    scopus 로고
    • Online subgradient methods for structured prediction
    • N. Ratliff, J. Bagnell, and M. Zinkevich. Online subgradient methods for structured prediction. In AISTATS, 2007.
    • (2007) AISTATS
    • Ratliff, N.1    Bagnell, J.2    Zinkevich, M.3
  • 20
  • 21
    • 64849095075 scopus 로고    scopus 로고
    • Make3d: Learning 3-d scene structure from a single still image
    • A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3-d scene structure from a single still image. T-PAMI, 31(5), 2008.
    • (2008) T-PAMI , vol.31 , Issue.5
    • Saxena, A.1    Sun, M.2    Ng, A.Y.3
  • 22
    • 70450148833 scopus 로고    scopus 로고
    • High performance outdoor navigation from overhead data using imitation learning
    • D. Silver, J. Bagnell, and A. Stentz. High performance outdoor navigation from overhead data using imitation learning. In RSS, 2008.
    • (2008) RSS
    • Silver, D.1    Bagnell, J.2    Stentz, A.3
  • 24
    • 70450204874 scopus 로고    scopus 로고
    • Learning crfs using graph cuts
    • M. Szummer, P. Kohli, and D. Hoiem. Learning crfs using graph cuts. In ECCV, 2008.
    • (2008) ECCV
    • Szummer, M.1    Kohli, P.2    Hoiem, D.3
  • 27
    • 24644445594 scopus 로고    scopus 로고
    • Contextual models for object detection using boosted random fields
    • A. Torralba, K. Murphy, and W. Freeman. Contextual models for object detection using boosted random fields. In NIPS, 2004.
    • (2004) NIPS
    • Torralba, A.1    Murphy, K.2    Freeman, W.3
  • 28
    • 84880867598 scopus 로고    scopus 로고
    • Instancebased amn classification for improved object recognition in 2d and 3d laser range data
    • R. Triebel, R. Schmidt, O. M. Mozos, and W. Burgard. Instancebased amn classification for improved object recognition in 2d and 3d laser range data. In IJCAI, 2007.
    • (2007) IJCAI
    • Triebel, R.1    Schmidt, R.2    Mozos, O.M.3    Burgard, W.4
  • 29
    • 51949109831 scopus 로고    scopus 로고
    • Scene understanding with discriminative structured prediction
    • J. Yuan, J. Li, and B. Zhang. Scene understanding with discriminative structured prediction. In CVPR, 2008.
    • (2008) CVPR
    • Yuan, J.1    Li, J.2    Zhang, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.