메뉴 건너뛰기




Volumn 45, Issue 1, 2006, Pages

Independent-component analysis for hyperspectral remote sensing imagery classification

Author keywords

Hyperspectral imagery; Independent component analysis; Noise adjusted principal components (NAPC) transform; Principal component analysis (PCA); Remote sensing; Unsupervised classification

Indexed keywords

DATA REDUCTION; DATA STRUCTURES; INDEPENDENT COMPONENT ANALYSIS; OBJECT RECOGNITION; PRINCIPAL COMPONENT ANALYSIS; REMOTE SENSING;

EID: 33748623423     PISSN: 00913286     EISSN: 15602303     Source Type: Journal    
DOI: 10.1117/1.2151172     Document Type: Article
Times cited : (48)

References (33)
  • 1
    • 0000186045 scopus 로고
    • "Mars: Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance"
    • in Lunar and Planetary Inst., Houston
    • R. B. Singer and T. B. McCord, "Mars: large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance," in Proc. 10th Lunar and Planetary Science Conf., pp. 1835-1848, Lunar and Planetary Inst., Houston (1979).
    • (1979) Proc. 10th Lunar and Planetary Science Conf. , pp. 1835-1848
    • Singer, R.B.1    McCord, T.B.2
  • 2
    • 0001395470 scopus 로고
    • "Spectral mixture modeling: A new analysis of rock and soil types at the Viking lander 1 suite"
    • J. B. Adams and M. O. Smith, "Spectral mixture modeling: a new analysis of rock and soil types at the Viking lander 1 suite," J. Geophys. Res. 91(B8), 8098-8112 (1986).
    • (1986) J. Geophys. Res. , vol.91 , Issue.B8 , pp. 8098-8112
    • Adams, J.B.1    Smith, M.O.2
  • 3
    • 0027334540 scopus 로고
    • "Linear mixing and estimation of ground cover proportions"
    • J. J. Settle and N. A. Drake, "Linear mixing and estimation of ground cover proportions," Int. J. Remote Sens. 14, 1159-1177 (1993).
    • (1993) Int. J. Remote Sens. , vol.14 , pp. 1159-1177
    • Settle, J.J.1    Drake, N.A.2
  • 4
    • 0000218155 scopus 로고
    • "Image spectroscopy: Interpretation based on spectral mixture analysis"
    • in C. M. Pieters and P. A. Englert, Eds., Cambridge University Press
    • J. B. Adams, M. O. Smith, and A. R. Gillespie, "Image spectroscopy: interpretation based on spectral mixture analysis," in Remote Geochemical Analysis: Elemental and Mineralogical Composition, C. M. Pieters and P. A. Englert, Eds., pp. 145-166, Cambridge University Press (1993).
    • (1993) Remote Geochemical Analysis: Elemental and Mineralogical Composition , pp. 145-166
    • Adams, J.B.1    Smith, M.O.2    Gillespie, A.R.3
  • 5
    • 0026191274 scopus 로고
    • "Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture"
    • C. Jutten and J. Herault, "Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture," Signal Process. 24(1), 1-10 (1991).
    • (1991) Signal Process. , vol.24 , Issue.1 , pp. 1-10
    • Jutten, C.1    Herault, J.2
  • 7
    • 0028416938 scopus 로고
    • "Independent component analysis - A new concept?"
    • P. Comon, "Independent component analysis - a new concept?" Signal Process. 36, 287-314 (1994).
    • (1994) Signal Process. , vol.36 , pp. 287-314
    • Comon, P.1
  • 8
    • 0030417779 scopus 로고    scopus 로고
    • "Equivalent adaptive source separation"
    • J. F. Cardoso and B. Laheld, "Equivalent adaptive source separation," IEEE Trans. Signal Process. 44(12), 3017-3030 (1996).
    • (1996) IEEE Trans. Signal Process. , vol.44 , Issue.12 , pp. 3017-3030
    • Cardoso, J.F.1    Laheld, B.2
  • 9
    • 0030285433 scopus 로고    scopus 로고
    • "Robust neural networks with online learning for blind identification and blind separation of sources"
    • A. Cichocki and R. Unbehauen, "Robust neural networks with online learning for blind identification and blind separation of sources," IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 43(11), 894-906 (1996).
    • (1996) IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. , vol.43 , Issue.11 , pp. 894-906
    • Cichocki, A.1    Unbehauen, R.2
  • 10
    • 0346307721 scopus 로고    scopus 로고
    • "A fast fixed-point algorithm for independent component analysis"
    • A. Hyvarinen and E. Oja, "A fast fixed-point algorithm for independent component analysis," Neural Comput. 9(7), 1483-1492 (1997).
    • (1997) Neural Comput. , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvarinen, A.1    Oja, E.2
  • 11
    • 0032629347 scopus 로고    scopus 로고
    • "Fast and robust fixed-point algorithms for independent component analysis"
    • A. Hyvarinen, "Fast and robust fixed-point algorithms for independent component analysis," IEEE Trans. Neural Netw. 10(3), 626-634 (1999).
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.3 , pp. 626-634
    • Hyvarinen, A.1
  • 12
    • 0009055917 scopus 로고    scopus 로고
    • "Independent component analysis (ICA): An enabling technology for intelligent information/image technology (IIT)"
    • H. Szu, "Independent component analysis (ICA): an enabling technology for intelligent information/image technology (IIT)," IEEE Circuits Devices Mag. 10, 14-37 (1999).
    • (1999) IEEE Circuits Devices Mag. , vol.10 , pp. 14-37
    • Szu, H.1
  • 14
    • 0033700505 scopus 로고    scopus 로고
    • "ICA neural net to refine remote sensing with multiple labels"
    • H. Szu and J. Buss, "ICA neural net to refine remote sensing with multiple labels," Proc. SPIE 4056, 32-49 (2000).
    • (2000) Proc. SPIE , vol.4056 , pp. 32-49
    • Szu, H.1    Buss, J.2
  • 16
    • 0033752388 scopus 로고    scopus 로고
    • "Unsupervised signature extraction and separation in hyperspectral images: A noise-adjusted fast independent component analysis approach"
    • T. Tu, "Unsupervised signature extraction and separation in hyperspectral images: a noise-adjusted fast independent component analysis approach," Opt. Eng. 39(4), 897-906 (2000).
    • (2000) Opt. Eng. , vol.39 , Issue.4 , pp. 897-906
    • Tu, T.1
  • 18
    • 0036649930 scopus 로고    scopus 로고
    • "New independent component analysis method using high order statistics with application to remote sensing images"
    • X. Zhang and C. H. Chen, "New independent component analysis method using high order statistics with application to remote sensing images," Opt. Eng. 41(7), 1717-1728 (2002).
    • (2002) Opt. Eng. , vol.41 , Issue.7 , pp. 1717-1728
    • Zhang, X.1    Chen, C.H.2
  • 19
    • 0037379646 scopus 로고    scopus 로고
    • "Overview of independent component analysis technique with an application to synthetic aperture radar (SAR) imagery processing"
    • S. Fiori, "Overview of independent component analysis technique with an application to synthetic aperture radar (SAR) imagery processing," Neural Networks 16, 453-467 (2003).
    • (2003) Neural Networks , vol.16 , pp. 453-467
    • Fiori, S.1
  • 20
    • 0023854011 scopus 로고
    • "A transformation for ordering multispectral data in terms of image quality with implications for noise removal"
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens. GE-26, 65-74 (1988).
    • (1988) IEEE Trans. Geosci. Remote Sens. , vol.GE-26 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4
  • 21
    • 0025430387 scopus 로고
    • "Enhancement of high spectral resolution remote sensing data by a noise-adjusted principal components transform"
    • J. B. Lee, A. S. Woodyatt, and M. Berman, "Enhancement of high spectral resolution remote sensing data by a noise-adjusted principal components transform," IEEE Trans. Geosci. Remote Sens. GE-28(3), 295-304 (1990).
    • (1990) IEEE Trans. Geosci. Remote Sens. , vol.GE-28 , Issue.3 , pp. 295-304
    • Lee, J.B.1    Woodyatt, A.S.2    Berman, M.3
  • 22
    • 0028545567 scopus 로고
    • "A faster way to compute the noise-adjusted principal components transform matrix"
    • R. E. Roger, "A faster way to compute the noise-adjusted principal components transform matrix," IEEE Trans. Geosci. Remote Sens. GE-32(6), 1194-1196 (1994).
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.GE-32 , Issue.6 , pp. 1194-1196
    • Roger, R.E.1
  • 23
    • 0033311252 scopus 로고    scopus 로고
    • "Interference and noise adjusted principal components analysis"
    • C.-I Chang and Q. Du, "Interference and noise adjusted principal components analysis," IEEE Trans. Geosci. Remote Sens. GE-37(9), 2387-2396 (1999).
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.GE-37 , Issue.9 , pp. 2387-2396
    • Chang, C.-I.1    Du, Q.2
  • 24
    • 1842481516 scopus 로고    scopus 로고
    • "Estimation of number of spectrally distinct signal sources in hyperspectral imagery"
    • C.-I Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. GE-42, 608-619 (2004).
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.GE-42 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 28
    • 0030186112 scopus 로고    scopus 로고
    • "Reliably estimating the noise in AVIRIS hyperspectral imagers"
    • R. E. Roger and J. F. Arnold, "Reliably estimating the noise in AVIRIS hyperspectral imagers," Int. J. Remote Sens. 17(10), 1951-1962 (1996).
    • (1996) Int. J. Remote Sens. , vol.17 , Issue.10 , pp. 1951-1962
    • Roger, R.E.1    Arnold, J.F.2
  • 31
    • 33748589121 scopus 로고    scopus 로고
    • http://speclab.cr.usgs.gov/spectral.lib04/spectral-lib04.html.
  • 32
    • 0033310314 scopus 로고    scopus 로고
    • "N-FINDER: An algorithm for fast autonomous spectral endmember determination in hyperspectral data"
    • M. E. Winter, "N-FINDER: an algorithm for fast autonomous spectral endmember determination in hyperspectral data," Proc. SPIE 3753, 266-275 (1999).
    • (1999) Proc. SPIE , vol.3753 , pp. 266-275
    • Winter, M.E.1
  • 33
    • 0033872604 scopus 로고    scopus 로고
    • "An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery"
    • C.-I Chang and H. Ren, "An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. GE-38(2), 1044-1063 (2000).
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.GE-38 , Issue.2 , pp. 1044-1063
    • Chang, C.-I.1    Ren, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.