메뉴 건너뛰기




Volumn 160, Issue 24, 2009, Pages 3601-3615

Robustness of density-based clustering methods with various neighborhood relations

Author keywords

Clustering; DBSCAN; FJP; FN DBSCAN; Fuzzy neighborhood

Indexed keywords

ARBITRARY SHAPE; CLUSTERING METHODS; DATA SETS; DBSCAN ALGORITHM; DENSITY-BASED CLUSTERING; DENSITY-BASED METHOD; DENSITY-BASED SPATIAL CLUSTERING OF APPLICATIONS WITH NOISE; DISTANCE-BASED; MAIN CHARACTERISTICS; NEIGHBORHOOD RELATION; ROBUST FUZZY; STATISTICAL DATA ANALYSIS;

EID: 70449715153     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2009.06.012     Document Type: Article
Times cited : (72)

References (28)
  • 1
    • 0032885005 scopus 로고    scopus 로고
    • Survey of spatio-temporal databases
    • Abraham T., and Roddick J.F. Survey of spatio-temporal databases. GeoInformatica 3 1 (1999) 61-99
    • (1999) GeoInformatica , vol.3 , Issue.1 , pp. 61-99
    • Abraham, T.1    Roddick, J.F.2
  • 3
    • 0034319320 scopus 로고    scopus 로고
    • Approaches for scaling DBSCAN algorithm to large spatial database
    • Aoying Z., and Shuigeng Z. Approaches for scaling DBSCAN algorithm to large spatial database. Journal of Computer Science and Technology 15 6 (2000) 509-526
    • (2000) Journal of Computer Science and Technology , vol.15 , Issue.6 , pp. 509-526
    • Aoying, Z.1    Shuigeng, Z.2
  • 5
    • 33846024749 scopus 로고    scopus 로고
    • ST-DBSCAN: an algorithm for clustering spatial-temporal data
    • Birant D., and Kut A. ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data & Knowledge Engineering 60 (2007) 208-221
    • (2007) Data & Knowledge Engineering , vol.60 , pp. 208-221
    • Birant, D.1    Kut, A.2
  • 6
    • 33646546673 scopus 로고    scopus 로고
    • A hierarchical clustering algorithm based on fuzzy graph connectedness
    • Dong Y., Zhuang Y., Chen K., and Tai X. A hierarchical clustering algorithm based on fuzzy graph connectedness. Fuzzy Sets and Systems 157 (2006) 1760-1774
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 1760-1774
    • Dong, Y.1    Zhuang, Y.2    Chen, K.3    Tai, X.4
  • 7
    • 34347333289 scopus 로고    scopus 로고
    • A local-density based spatial clustering algorithm with noise
    • Duan L., Xu L., Guo F., Lee J., and Yan B. A local-density based spatial clustering algorithm with noise. Information Systems 32 (2007) 978-986
    • (2007) Information Systems , vol.32 , pp. 978-986
    • Duan, L.1    Xu, L.2    Guo, F.3    Lee, J.4    Yan, B.5
  • 8
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • Dunn J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics 3 3 (1973) 32-57
    • (1973) Journal of Cybernetics , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.C.1
  • 11
    • 0032628736 scopus 로고    scopus 로고
    • On distance measures for the fuzzy K-means algorithm for joint data
    • Hammah R.E., and Curran J.H. On distance measures for the fuzzy K-means algorithm for joint data. Rock Mechanics and Rock Engineering 32 1 (1999) 1-27
    • (1999) Rock Mechanics and Rock Engineering , vol.32 , Issue.1 , pp. 1-27
    • Hammah, R.E.1    Curran, J.H.2
  • 13
    • 0010415411 scopus 로고    scopus 로고
    • Spatial clustering methods in data mining: a survey
    • Miller H., and Han J. (Eds), Taylor & Francis, London
    • Han J., Kamber M., and Tung A.K.H. Spatial clustering methods in data mining: a survey. In: Miller H., and Han J. (Eds). Geographic Data Mining and Knowledge Discovery (2001), Taylor & Francis, London
    • (2001) Geographic Data Mining and Knowledge Discovery
    • Han, J.1    Kamber, M.2    Tung, A.K.H.3
  • 17
    • 40449116360 scopus 로고    scopus 로고
    • A robust algorithm for fuzzy clustering problem on the base of fuzzy joint points method
    • Nasibov E.N. A robust algorithm for fuzzy clustering problem on the base of fuzzy joint points method. Cybernetics and Systems Analysis 44 1 (2008)
    • (2008) Cybernetics and Systems Analysis , vol.44 , Issue.1
    • Nasibov, E.N.1
  • 18
    • 34547477671 scopus 로고    scopus 로고
    • A new unsupervised approach for fuzzy clustering
    • Nasibov E.N., and Ulutagay G. A new unsupervised approach for fuzzy clustering. Fuzzy Sets and Systems 158 (2007) 2118-2133
    • (2007) Fuzzy Sets and Systems , vol.158 , pp. 2118-2133
    • Nasibov, E.N.1    Ulutagay, G.2
  • 19
    • 33747058824 scopus 로고    scopus 로고
    • A new approach to clustering problem using the fuzzy joint points method
    • Nasibov E.N., and Ulutagay G. A new approach to clustering problem using the fuzzy joint points method. Automatic Control and Computer Sciences 39 6 (2005) 8-17
    • (2005) Automatic Control and Computer Sciences , vol.39 , Issue.6 , pp. 8-17
    • Nasibov, E.N.1    Ulutagay, G.2
  • 20
    • 70449716255 scopus 로고    scopus 로고
    • On the fuzzy joint points method for fuzzy clustering problem
    • Nasibov E.N., and Ulutagay G. On the fuzzy joint points method for fuzzy clustering problem. Automatic Control and Computer Sciences 40 5 (2006) 33-44
    • (2006) Automatic Control and Computer Sciences , vol.40 , Issue.5 , pp. 33-44
    • Nasibov, E.N.1    Ulutagay, G.2
  • 21
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • Pal N.R., and Bezdek J.C. On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems 3 3 (1995) 370-379
    • (1995) IEEE Transactions on Fuzzy Systems , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 23
    • 27944493878 scopus 로고    scopus 로고
    • Classification and clustering of information objects based on fuzzy neighborhood system
    • Man and Cybernetics, Hawaii
    • M. Sadaaki, Y. Endo, S. Hayakawa, E. Kataoka, Classification and clustering of information objects based on fuzzy neighborhood system, in: IEEE Internat. Conf. on Systems, Man and Cybernetics, Hawaii, 2005, pp. 3210-3215.
    • (2005) IEEE Internat. Conf. on Systems , pp. 3210-3215
    • Sadaaki, M.1    Endo, Y.2    Hayakawa, S.3    Kataoka, E.4
  • 25
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications
    • Sander J., Ester M., Kriegel H.P., and Xu X. Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery 2 (1998) 169-194
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.P.3    Xu, X.4
  • 26
    • 0031192645 scopus 로고    scopus 로고
    • An investigation of mountain method clustering for large data sets
    • Velthuizen R.P., Hall L.O., Clarke L.P., and Silbiger M.L. An investigation of mountain method clustering for large data sets. Pattern Recognition 30 7 (1997) 1121-1135
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1121-1135
    • Velthuizen, R.P.1    Hall, L.O.2    Clarke, L.P.3    Silbiger, M.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.