메뉴 건너뛰기




Volumn 44, Issue 1, 2008, Pages 7-17

A robust algorithm for solution of the fuzzy clustering problem on the basis of the fuzzy joint points method

Author keywords

Clustering; Fuzzy joint points (FJP); Fuzzy joint set; Robustness

Indexed keywords

ALGORITHMS; CYBERNETICS; FUZZY SETS; SYSTEMS ANALYSIS;

EID: 40449116360     PISSN: 10600396     EISSN: 15738337     Source Type: Journal    
DOI: 10.1007/s10559-008-0002-0     Document Type: Article
Times cited : (7)

References (14)
  • 1
    • 0003585297 scopus 로고    scopus 로고
    • Data Mining: Concepts and Techniques
    • 1. J. Han M. Kamber 2001 Data Mining: Concepts and Techniques Acad. Press San Diego J. Han and M. Kamber, Data Mining: Concepts and Techniques, Acad. Press, San Diego (2001).
    • (2001)
    • Han, J.1    Kamber, M.2
  • 2
    • 0003622623 scopus 로고    scopus 로고
    • Fuzzy Sets and Their Application to Clustering and Training
    • 2. D. Dumitrescu B. Lazzerini L. C. Jain 2000 Fuzzy Sets and Their Application to Clustering and Training CRC Press LLC New York D. Dumitrescu, B. Lazzerini, and L. C. Jain, Fuzzy Sets and Their Application to Clustering and Training, CRC Press LLC, New York (2000).
    • (2000)
    • Dumitrescu, D.1    Lazzerini, B.2    Jain, L.C.3
  • 3
    • 0036407847 scopus 로고    scopus 로고
    • Identification of states of complex systems with estimation of admissible measurement errors on the basis of fuzzy information
    • 3. E. N. Nasibov 2002 Identification of states of complex systems with estimation of admissible measurement errors on the basis of fuzzy information Cybernetics and Systems Analysis 38 1 63 71 10.1023/A:1015540015031 1930434 E. N. Nasibov, “Identification of states of complex systems with estimation of admissible measurement errors on the basis of fuzzy information,” Cybernetics and Systems Analysis, 38, No. 1, 63–71 (2002).
    • (2002) Cybernetics and Systems Analysis , vol.38 , Issue.1 , pp. 63-71
    • Nasibov, E.N.1
  • 4
    • 0036424846 scopus 로고    scopus 로고
    • A problem of identification of states of a system from fuzzy values of informational features
    • 4. E. N. Nasibov 2002 A problem of identification of states of a system from fuzzy values of informational features Avtomat. Vychisl. Tekhn. 36 2 33 40 211142 E. N. Nasibov, “A problem of identification of states of a system from fuzzy values of informational features,” Avtomat. Vychisl. Tekhn., 36, No. 2, 33–40 (2002).
    • (2002) Avtomat. Vychisl. Tekhn. , vol.36 , Issue.2 , pp. 33-40
    • Nasibov, E.N.1
  • 5
    • 85121085412 scopus 로고    scopus 로고
    • 5. E. N. Nasibov and G. Ulutagay, “Program tools for fuzzy clustering analysis,” in: Proc. Intern. Scientific Conf. “Inform. Tech. and Telecomm. in Educ. and Science,” Antalya, Turkey (2006), pp. 195–197.
  • 6
    • 27744601646 scopus 로고    scopus 로고
    • A new approach to the problem of clustering using the fuzzy joint points method
    • 6. E. N. Nasibov G. Ulutagay 2005 A new approach to the problem of clustering using the fuzzy joint points method Avtomat. Vychisl. Tekhn. 39 6 11 21 E. N. Nasibov and G. Ulutagay, “A new approach to the problem of clustering using the fuzzy joint points method,” Avtomat. Vychisl. Tekhn., 39, No. 6, 11–21 (2005).
    • (2005) Avtomat. Vychisl. Tekhn. , vol.39 , Issue.6 , pp. 11-21
    • Nasibov, E.N.1    Ulutagay, G.2
  • 7
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy C-means model
    • 7. N. R. Pal J. C. Bezdek 1995 On cluster validity for the fuzzy C-means model IEEE Trans. on Fuzzy Systems 3 3 370 379 10.1109/91.413225 N. R. Pal and J. C. Bezdek, “On cluster validity for the fuzzy C-means model,” IEEE Trans. on Fuzzy Systems, 3, No. 3, 370–379 (1995).
    • (1995) IEEE Trans. on Fuzzy Systems , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 8
    • 0035897962 scopus 로고    scopus 로고
    • Fuzzy clustering based on K-nearest-neighbours rule
    • 8. N. Zahid O. Abouelala M. Limouri A. Essaid 2001 Fuzzy clustering based on K-nearest-neighbours rule Fuzzy Sets and Systems 120 239 247 0981.62057 10.1016/S0165-0114(99)00074-3 1854153 N. Zahid, O. Abouelala, M. Limouri, and A. Essaid, “Fuzzy clustering based on K-nearest-neighbours rule,” Fuzzy Sets and Systems, 120, 239–247 (2001).
    • (2001) Fuzzy Sets and Systems , vol.120 , pp. 239-247
    • Zahid, N.1    Abouelala, O.2    Limouri, M.3    Essaid, A.4
  • 9
    • 0031192645 scopus 로고    scopus 로고
    • An investigation of mountain method clustering for large data sets
    • 9. R. P. Velthuizen L. O. Hall L. P. Clarke M. L. Silbiger 1997 An investigation of mountain method clustering for large data sets Pattern Recognition 30 7 1121 1135 10.1016/S0031-3203(96)00133-1 R. P. Velthuizen, L. O. Hall, L. P. Clarke, and M. L. Silbiger, “An investigation of mountain method clustering for large data sets,” Pattern Recognition, 30, No. 7, 1121–1135 (1997).
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1121-1135
    • Velthuizen, R.P.1    Hall, L.O.2    Clarke, L.P.3    Silbiger, M.L.4
  • 10
    • 0028482884 scopus 로고
    • Approximate clustering via the mountain method
    • 10. R. R. Yager D. P. Filev 1994 Approximate clustering via the mountain method IEEE Trans. on Systems, Man, and Cybernetics 24 8 1279 1284 10.1109/21.299710 R. R. Yager and D. P. Filev, “Approximate clustering via the mountain method,” IEEE Trans. on Systems, Man, and Cybernetics, 24, No. 8, 1279–1284 (1994).
    • (1994) IEEE Trans. on Systems, Man, and Cybernetics , vol.24 , Issue.8 , pp. 1279-1284
    • Yager, R.R.1    Filev, D.P.2
  • 11
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • 11. J. C. Dunn 1973 A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters Cybernetics 3 3 32 57 0291.68033 375857 J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters,” Cybernetics, 3, No. 3, 32–57 (1973).
    • (1973) Cybernetics , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.C.1
  • 12
    • 0032628736 scopus 로고    scopus 로고
    • On distance measures for the fuzzy K-means algorithm for joint data
    • 12. R. E. Hammah J. H. Curran 1999 On distance measures for the fuzzy K-means algorithm for joint data Rock Mech. Rock Eng. 32 1 1 27 10.1007/s006030050041 R. E. Hammah and J. H. Curran, “On distance measures for the fuzzy K-means algorithm for joint data,” Rock Mech. Rock Eng., 32, No 1, 1–27 (1999).
    • (1999) Rock Mech. Rock Eng. , vol.32 , Issue.1 , pp. 1-27
    • Hammah, R.E.1    Curran, J.H.2
  • 13
    • 0037118554 scopus 로고    scopus 로고
    • Unsupervised fuzzy clustering with multi-center clusters
    • 13. C. W. Tao 2002 Unsupervised fuzzy clustering with multi-center clusters Fuzzy Sets and Systems 128 305 322 0999.62046 10.1016/S0165-0114(01)00191-9 1908603 C. W. Tao, “Unsupervised fuzzy clustering with multi-center clusters,” Fuzzy Sets and Systems, 128, 305–322 (2002).
    • (2002) Fuzzy Sets and Systems , vol.128 , pp. 305-322
    • Tao, C.W.1
  • 14
    • 0030149087 scopus 로고    scopus 로고
    • Validity-Guided (Re)clustering with applications to image segmentation
    • 14. A. M. Bensaid L. O. Hall J. C. Bezdek 1996 Validity-Guided (Re)clustering with applications to image segmentation IEEE Trans. on Fuzzy Systems 4 2 112 123 10.1109/91.493905 A. M. Bensaid, L. O. Hall, J. C. Bezdek, et al., “Validity-Guided (Re)clustering with applications to image segmentation,” IEEE Trans. on Fuzzy Systems, 4, No. 2, 112–123 (1996).
    • (1996) IEEE Trans. on Fuzzy Systems , vol.4 , Issue.2 , pp. 112-123
    • Bensaid, A.M.1    Hall, L.O.2    Bezdek, J.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.