메뉴 건너뛰기




Volumn 43, Issue 3, 2010, Pages 782-795

Normality-based validation for crisp clustering

Author keywords

Cluster validation; Crisp clustering; Negentropy

Indexed keywords

CLUSTER VALIDATION; COVARIANCE MATRICES; DATA DISTRIBUTION; DIFFERENTIAL ENTROPY; HIGH ORDER; INTRA-CLUSTER; NEGENTROPY; NEW INDICES; NUMBER OF CLUSTERS; REAL PROBLEMS; VALIDITY INDEX;

EID: 70449703225     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.09.018     Document Type: Article
Times cited : (34)

References (54)
  • 3
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu R., and Wunsch II D. Survey of clustering algorithms. IEEE Trans. Neural Networks 16 3 (2005) 645-678
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch II, D.2
  • 4
    • 0041490380 scopus 로고    scopus 로고
    • Cluster validation
    • Hayashi C., Ohsumi N., Yajima K., Tanaka Y., Bock H.H., and Baba Y. (Eds), Springer, New York
    • Gordon A.D. Cluster validation. In: Hayashi C., Ohsumi N., Yajima K., Tanaka Y., Bock H.H., and Baba Y. (Eds). Data Science, Classification and Related Methods (1998), Springer, New York 22-39
    • (1998) Data Science, Classification and Related Methods , pp. 22-39
    • Gordon, A.D.1
  • 5
    • 0030351528 scopus 로고
    • An entropy criterion for assessing the number of clusters in a mixture model
    • Celeux G., and Soromenho G. An entropy criterion for assessing the number of clusters in a mixture model. J. Classification 13 2 (1993) 195-212
    • (1993) J. Classification , vol.13 , Issue.2 , pp. 195-212
    • Celeux, G.1    Soromenho, G.2
  • 6
    • 34548692289 scopus 로고    scopus 로고
    • Relational visual cluster validity (RVCV)
    • Ding Y., and Harrison R.F. Relational visual cluster validity (RVCV). Pattern Recognition Lett. 28 15 (2007) 2071-2079
    • (2007) Pattern Recognition Lett. , vol.28 , Issue.15 , pp. 2071-2079
    • Ding, Y.1    Harrison, R.F.2
  • 7
    • 0037410621 scopus 로고    scopus 로고
    • Visual cluster validity for prototype generator clustering models
    • Hathaway R.J., and Bezdek J.C. Visual cluster validity for prototype generator clustering models. Pattern Recognition Lett. 24 9-10 (2003) 1563-1569
    • (2003) Pattern Recognition Lett. , vol.24 , Issue.9-10 , pp. 1563-1569
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 8
    • 0031166291 scopus 로고    scopus 로고
    • Cluster validation using graph theoretic concepts
    • Pal N.R., and Biswas J. Cluster validation using graph theoretic concepts. Pattern Recognition 30 6 (1997) 847-857
    • (1997) Pattern Recognition , vol.30 , Issue.6 , pp. 847-857
    • Pal, N.R.1    Biswas, J.2
  • 9
    • 0032023174 scopus 로고    scopus 로고
    • A new cluster validity index for the fuzzy c-mean
    • Rezaee M., Lelieveldt B., and Reiber J. A new cluster validity index for the fuzzy c-mean. Pattern Recognition Lett. 19 3-4 (1998) 237-246
    • (1998) Pattern Recognition Lett. , vol.19 , Issue.3-4 , pp. 237-246
    • Rezaee, M.1    Lelieveldt, B.2    Reiber, J.3
  • 10
    • 0030381104 scopus 로고    scopus 로고
    • A validity measure for fuzzy clustering and its use in selecting optimal number of clusters
    • H. Rhee, K. Oh, A validity measure for fuzzy clustering and its use in selecting optimal number of clusters, in: Proceedings of the 5th IEEE International Conference on Fuzzy Systems, vol. 2, 1996, pp. 1020-1025.
    • (1996) Proceedings of the 5th IEEE International Conference on Fuzzy Systems , vol.2 , pp. 1020-1025
    • Rhee, H.1    Oh, K.2
  • 11
    • 34547434740 scopus 로고    scopus 로고
    • On fuzzy cluster validity indices
    • Wang W., and Zhang Y. On fuzzy cluster validity indices. Fuzzy Sets and Systems 158 19 (2007) 2095-2117
    • (2007) Fuzzy Sets and Systems , vol.158 , Issue.19 , pp. 2095-2117
    • Wang, W.1    Zhang, Y.2
  • 15
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • Dunn J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybernet. 3 3 (1973) 32-57
    • (1973) J. Cybernet. , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.C.1
  • 17
    • 33745841541 scopus 로고    scopus 로고
    • An objective approach to cluster validation
    • Bouguessa M., Wang S., and Sun H. An objective approach to cluster validation. Pattern Recognition Lett. 27 13 (2006) 1419-1430
    • (2006) Pattern Recognition Lett. , vol.27 , Issue.13 , pp. 1419-1430
    • Bouguessa, M.1    Wang, S.2    Sun, H.3
  • 18
    • 0033739050 scopus 로고    scopus 로고
    • A comparison of cluster validity criteria for a mixture of normal distributed data
    • Geva A.B., Steinberg Y., Bruckmair S., and Nahum G. A comparison of cluster validity criteria for a mixture of normal distributed data. Pattern Recognition Lett. 21 6-7 (2000) 511-529
    • (2000) Pattern Recognition Lett. , vol.21 , Issue.6-7 , pp. 511-529
    • Geva, A.B.1    Steinberg, Y.2    Bruckmair, S.3    Nahum, G.4
  • 19
    • 33745771561 scopus 로고    scopus 로고
    • NEC: A Hierarchical Agglomerative Clustering based on Fisher and Negentropy Information
    • Springer, Berlin
    • A. Ciaramella, G. Longo, A. Staiano, R. Tagliaferri, in: NEC: A Hierarchical Agglomerative Clustering based on Fisher and Negentropy Information, Lecture Notes in Computer Science, vol. 3931, Springer, Berlin, 2006, pp. 49-56.
    • (2006) Lecture Notes in Computer Science , vol.3931 , pp. 49-56
    • Ciaramella, A.1    Longo, G.2    Staiano, A.3    Tagliaferri, R.4
  • 21
    • 0033105385 scopus 로고    scopus 로고
    • An improvement of the NEC criterion for assessing the number of clusters in a mixture model
    • Biernacki C., Celeux G., and Govaert G. An improvement of the NEC criterion for assessing the number of clusters in a mixture model. Pattern Recognition Lett. 20 3 (1999) 267-272
    • (1999) Pattern Recognition Lett. , vol.20 , Issue.3 , pp. 267-272
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 22
    • 0002356276 scopus 로고
    • Choosing the number of component clusters in the mixture-model using a new information complexity criterion of the inverse-Fisher information matrix
    • Opitz O., Lausen B., and Klar R. (Eds), Springer, Heidelberg
    • Bozdogan H. Choosing the number of component clusters in the mixture-model using a new information complexity criterion of the inverse-Fisher information matrix. In: Opitz O., Lausen B., and Klar R. (Eds). Data Analysis and Knowledge Organization (1993), Springer, Heidelberg 40-54
    • (1993) Data Analysis and Knowledge Organization , pp. 40-54
    • Bozdogan, H.1
  • 24
    • 79955803023 scopus 로고    scopus 로고
    • The infinite Gaussian mixture model
    • Solla S., Leen T., and Müller K.-R. (Eds), MIT Press, Cambridge, MA
    • Rasmussen C. The infinite Gaussian mixture model. In: Solla S., Leen T., and Müller K.-R. (Eds). Advances in Neural Information Processing Systems vol. 12 (2000), MIT Press, Cambridge, MA 554-560
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 554-560
    • Rasmussen, C.1
  • 25
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal R.M. Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graphical Stat. 9 2 (2000) 249-265
    • (2000) J. Comput. Graphical Stat. , vol.9 , Issue.2 , pp. 249-265
    • Neal, R.M.1
  • 26
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with unknown number of components
    • Richardson S., and Green P. On Bayesian analysis of mixtures with unknown number of components. J. R. Stat. Soc. B 59 (1997) 731-792
    • (1997) J. R. Stat. Soc. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.2
  • 27
    • 0036359730 scopus 로고    scopus 로고
    • A stability based method for discovering structure in clustered data
    • Altman R., Dunker A., Hunter L., Klein T., and Lauderdale K. (Eds), World Scientific, Singapore
    • Ben-Hur A., Elisseeff A., and Guyon I. A stability based method for discovering structure in clustered data. In: Altman R., Dunker A., Hunter L., Klein T., and Lauderdale K. (Eds). Pacific Symposium on Biocomputing vol. 7 (2002), World Scientific, Singapore 6-17
    • (2002) Pacific Symposium on Biocomputing , vol.7 , pp. 6-17
    • Ben-Hur, A.1    Elisseeff, A.2    Guyon, I.3
  • 28
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validation of clustering solutions
    • Lange T., Roth V., Braun M.L., and Buhmann J.M. Stability-based validation of clustering solutions. Neural Comput. 16 6 (2004) 1299-1323
    • (2004) Neural Comput. , vol.16 , Issue.6 , pp. 1299-1323
    • Lange, T.1    Roth, V.2    Braun, M.L.3    Buhmann, J.M.4
  • 29
    • 34249855008 scopus 로고    scopus 로고
    • Model-order selection for bio-molecular data clustering
    • Bertoni A., and Valentini G. Model-order selection for bio-molecular data clustering. BMC Bioinformatics 8 Suppl. 2 (2007) S7
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 2
    • Bertoni, A.1    Valentini, G.2
  • 30
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Friedman J.H., and Tukey J.W. A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. C-23 (1974) 881-890
    • (1974) IEEE Trans. Comput. , vol.C-23 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 31
    • 0000263797 scopus 로고
    • Projection pursuit
    • Huber P.J. Projection pursuit. Ann. Stat. 13 2 (1985) 435-475
    • (1985) Ann. Stat. , vol.13 , Issue.2 , pp. 435-475
    • Huber, P.J.1
  • 32
  • 34
    • 21144470310 scopus 로고
    • Adaptive smoothing and density based test of multivariate normality
    • Bowman A.W., and Foster P.J. Adaptive smoothing and density based test of multivariate normality. J. Am. Stat. Assoc. 88 422 (1993) 529-537
    • (1993) J. Am. Stat. Assoc. , vol.88 , Issue.422 , pp. 529-537
    • Bowman, A.W.1    Foster, P.J.2
  • 35
    • 0031185197 scopus 로고    scopus 로고
    • A new approach to the BHEP tests for multivariate normality
    • Henze N., and Wagner T. A new approach to the BHEP tests for multivariate normality. J. Multivariate Anal. 62 1 (1997) 1-23
    • (1997) J. Multivariate Anal. , vol.62 , Issue.1 , pp. 1-23
    • Henze, N.1    Wagner, T.2
  • 36
    • 0002536134 scopus 로고
    • A comparative study of goodness-of-fit tests for multivariate normality
    • Romeu J.L., and Ozturk A. A comparative study of goodness-of-fit tests for multivariate normality. J. Multivariate Anal. 46 2 (1993) 309-334
    • (1993) J. Multivariate Anal. , vol.46 , Issue.2 , pp. 309-334
    • Romeu, J.L.1    Ozturk, A.2
  • 37
    • 7044235251 scopus 로고    scopus 로고
    • A new test for multivariate normality
    • Székely G.J., and Rizzo M.L. A new test for multivariate normality. J. Multivariate Anal. 93 1 (2005) 58-80
    • (2005) J. Multivariate Anal. , vol.93 , Issue.1 , pp. 58-80
    • Székely, G.J.1    Rizzo, M.L.2
  • 38
    • 0041079691 scopus 로고
    • Applications of sets of points uniformly distributed on a sphere to testing multinormality and robust estimation
    • Jiang Z.P., Yan S.J., Cheng P., and Wu R. (Eds), World Scientific, Singapore
    • Fang K.T., Yuan K.H., and Bentler P.M. Applications of sets of points uniformly distributed on a sphere to testing multinormality and robust estimation. In: Jiang Z.P., Yan S.J., Cheng P., and Wu R. (Eds). Probability and Statistics (1992), World Scientific, Singapore 56-73
    • (1992) Probability and Statistics , pp. 56-73
    • Fang, K.T.1    Yuan, K.H.2    Bentler, P.M.3
  • 39
    • 2942611661 scopus 로고
    • Measures of multivariate skewness and kurtosis with applications
    • Mardia K.V. Measures of multivariate skewness and kurtosis with applications. Biometrika 57 3 (1970) 519-530
    • (1970) Biometrika , vol.57 , Issue.3 , pp. 519-530
    • Mardia, K.V.1
  • 40
    • 0000903755 scopus 로고
    • A consistent test for multivariate normality based on the empirical characteristic function
    • Baringhaus L., and Henze N. A consistent test for multivariate normality based on the empirical characteristic function. Metrika 35 1 (1988) 339-348
    • (1988) Metrika , vol.35 , Issue.1 , pp. 339-348
    • Baringhaus, L.1    Henze, N.2
  • 41
    • 0000415646 scopus 로고
    • Testing for normality in arbitrary dimension
    • Csorgo S. Testing for normality in arbitrary dimension. Ann. Stat. 14 2 (1986) 708-723
    • (1986) Ann. Stat. , vol.14 , Issue.2 , pp. 708-723
    • Csorgo, S.1
  • 42
    • 0002260546 scopus 로고
    • A test for normality based on sample entropy
    • Vasiceck O. A test for normality based on sample entropy. J. R. Stat. Soc. B 38 1 (1976) 54-59
    • (1976) J. R. Stat. Soc. B , vol.38 , Issue.1 , pp. 54-59
    • Vasiceck, O.1
  • 43
    • 0000494597 scopus 로고
    • A test for multivariate normality based on sample entropy and projection pursuit
    • Zhu L.X., Wong H.L., and Fang K.T. A test for multivariate normality based on sample entropy and projection pursuit. J. Stat. Plann. Inference 45 3 (1995) 373-385
    • (1995) J. Stat. Plann. Inference , vol.45 , Issue.3 , pp. 373-385
    • Zhu, L.X.1    Wong, H.L.2    Fang, K.T.3
  • 44
    • 0004093146 scopus 로고    scopus 로고
    • New approximations of differential entropy for independent component analysis and projection pursuit
    • Technical Report A47, Department of Computer Science and Engineering and Laboratory of Computer and Information Science, Helsinki University of Technology
    • A. Hyvärinen, New approximations of differential entropy for independent component analysis and projection pursuit, Technical Report A47, Department of Computer Science and Engineering and Laboratory of Computer and Information Science, Helsinki University of Technology, 1997.
    • (1997)
    • Hyvärinen, A.1
  • 45
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon P. Independent component analysis, a new concept?. Signal Process. 36 3 (1994) 287-314
    • (1994) Signal Process. , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 46
    • 22944483445 scopus 로고    scopus 로고
    • Edgeworth approximation of multivariate differential entropy
    • Van Hulle M.M. Edgeworth approximation of multivariate differential entropy. Neural Comput. 17 9 (2005) 1903-1910
    • (2005) Neural Comput. , vol.17 , Issue.9 , pp. 1903-1910
    • Van Hulle, M.M.1
  • 47
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20 (1987) 53-65
    • (1987) J. Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 48
    • 0001684051 scopus 로고    scopus 로고
    • A geometric approach to cluster validity for normal mixtures
    • Bezdek J.C., Li W.Q., Attikiouzel Y., and Windham M. A geometric approach to cluster validity for normal mixtures. Soft Comput. 1 (1997) 166-179
    • (1997) Soft Comput. , vol.1 , pp. 166-179
    • Bezdek, J.C.1    Li, W.Q.2    Attikiouzel, Y.3    Windham, M.4
  • 50
    • 70449698686 scopus 로고    scopus 로고
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository 〈http://www.ics.uci.edu/∼ mlearn/MLRepository.html〉.
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository 〈http://www.ics.uci.edu/∼ mlearn/MLRepository.html〉.
  • 51
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Ann. Eugenics 7 (1936) 179-188
    • (1936) Ann. Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 52
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • Mangasarian W.H., and Wolberg O.L. Cancer diagnosis via linear programming. SIAM News 23 5 (1990) 1-18
    • (1990) SIAM News , vol.23 , Issue.5 , pp. 1-18
    • Mangasarian, W.H.1    Wolberg, O.L.2
  • 53
    • 0012018345 scopus 로고
    • Comparison of classifiers in high dimensional settings
    • Technical Report 92-02, Department of Computer Science and Department of Mathematics and Statistics, James Cook University of North Queensland
    • S. Aeberhard, D. Coomans, O. de Vel, Comparison of classifiers in high dimensional settings, Technical Report 92-02, Department of Computer Science and Department of Mathematics and Statistics, James Cook University of North Queensland, 1992.
    • (1992)
    • Aeberhard, S.1    Coomans, D.2    de Vel, O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.