-
3
-
-
0000903755
-
A consistent test for multivariate normality based on the empirical characteristic function
-
Baringhaus L., Henze N. A consistent test for multivariate normality based on the empirical characteristic function. Metrika. 35:1988;339-348.
-
(1988)
Metrika
, vol.35
, pp. 339-348
-
-
Baringhaus, L.1
Henze, N.2
-
4
-
-
21144466927
-
Limit distributions for Mardia's measure of multivariate skewness
-
Baringhaus L., Henze N. Limit distributions for Mardia's measure of multivariate skewness. Ann. Statist. 20:1992;1989-2002.
-
(1992)
Ann. Statist.
, vol.20
, pp. 1989-2002
-
-
Baringhaus, L.1
Henze, N.2
-
5
-
-
21144470310
-
Adaptive smoothing and density-based tests of multivariate normality
-
Bowman A. W., Foster P. J. Adaptive smoothing and density-based tests of multivariate normality. J. Amer. Statist. Assoc. 88:1993;529-537.
-
(1993)
J. Amer. Statist. Assoc.
, vol.88
, pp. 529-537
-
-
Bowman, A.W.1
Foster, P.J.2
-
6
-
-
0000415646
-
Testing for normality in arbitrary dimension
-
Csörgo S. Testing for normality in arbitrary dimension. Ann. Statist. 14:1986;708-732.
-
(1986)
Ann. Statist.
, vol.14
, pp. 708-732
-
-
Csörgo, S.1
-
7
-
-
0000485584
-
Consistency of some tests for multivariate normality
-
Csörgo S. Consistency of some tests for multivariate normality. Metrika. 36:1989;107-116.
-
(1989)
Metrika
, vol.36
, pp. 107-116
-
-
Csörgo, S.1
-
9
-
-
0001623560
-
A test for normality based on the empirical characteristic function
-
Epps T. W., Pulley L. B. A test for normality based on the empirical characteristic function. Biometrika. 70:1983;723-726.
-
(1983)
Biometrika
, vol.70
, pp. 723-726
-
-
Epps, T.W.1
Pulley, L.B.2
-
10
-
-
0000928677
-
Asymptotic expansions for Bivariate von Mises Functionals
-
Götze F. Asymptotic expansions for Bivariate von Mises Functionals. Z. Wahrsch. Verw. Gebiete. 50:1979;333-355.
-
(1979)
Z. Wahrsch. Verw. Gebiete
, vol.50
, pp. 333-355
-
-
Götze, F.1
-
11
-
-
0000708450
-
A class of invariant and consistent tests for multivariate normality
-
Henze N., Zirkler B. A class of invariant and consistent tests for multivariate normality. Commun. Statist. Theory Methods. 19:1990;3595-3617.
-
(1990)
Commun. Statist. Theory Methods
, vol.19
, pp. 3595-3617
-
-
Henze, N.1
Zirkler, B.2
-
12
-
-
0000804306
-
On Mardia's kurtosis test for multivariate normality
-
Henze N. On Mardia's kurtosis test for multivariate normality. Commun. Statist. Theory Methods. 23:1994;1031-1045.
-
(1994)
Commun. Statist. Theory Methods
, vol.23
, pp. 1031-1045
-
-
Henze, N.1
-
13
-
-
0031572681
-
Extreme smoothing and testing for multivariate normality
-
Henze N. Extreme smoothing and testing for multivariate normality. Statist. Probab. Lett. 1997.
-
(1997)
Statist. Probab. Lett.
-
-
Henze, N.1
-
14
-
-
0002137108
-
A comparison of tests for multivariate normality that are based on measures of multivariate skewness and kurtosis
-
Horswell R. L., Looney St. W. A comparison of tests for multivariate normality that are based on measures of multivariate skewness and kurtosis. Journ. Statist. Comp. Simul. 42:1992;21-38.
-
(1992)
Journ. Statist. Comp. Simul.
, vol.42
, pp. 21-38
-
-
Horswell, R.L.1
Looney, St.W.2
-
16
-
-
0010869882
-
Locally best invariant tests for multivariate normality in curved families withμ
-
p. 311-322
-
Kariya T., George E. Locally best invariant tests for multivariate normality in curved families withμ IMS Lecture Notes. 1992;. p. 311-322.
-
(1992)
IMS Lecture Notes
-
-
Kariya, T.1
George, E.2
-
17
-
-
0000061805
-
Probability plots for assessing multivariate normality
-
Koziol J. A. Probability plots for assessing multivariate normality. The Statistician. 42:1993;161-173.
-
(1993)
The Statistician
, vol.42
, pp. 161-173
-
-
Koziol, J.A.1
-
18
-
-
2942611661
-
Measures of multivariate skewness and kurtosis with applications
-
Mardia K. V. Measures of multivariate skewness and kurtosis with applications. Biometrika. 57:1970;519-530.
-
(1970)
Biometrika
, vol.57
, pp. 519-530
-
-
Mardia, K.V.1
-
22
-
-
0000190321
-
On weighting the studentized empirical characteristic function for testing normality
-
Naito K. On weighting the studentized empirical characteristic function for testing normality. Commun. Statist. Simul. 25:1996;201-213.
-
(1996)
Commun. Statist. Simul.
, vol.25
, pp. 201-213
-
-
Naito, K.1
-
23
-
-
27844523203
-
A new method for assessing multivariate normality with graphical applications
-
Ozturk A., Romeu J. L. A new method for assessing multivariate normality with graphical applications. Commun. Statist. Simul. 21:1992;15-34.
-
(1992)
Commun. Statist. Simul.
, vol.21
, pp. 15-34
-
-
Ozturk, A.1
Romeu, J.L.2
-
25
-
-
0002536134
-
A comparative study of goodness-of-fit tests for multivariate normality
-
Romeu J. L., Ozturk A. A comparative study of goodness-of-fit tests for multivariate normality. Journ. Multiv. Anal. 46:1993;309-334.
-
(1993)
Journ. Multiv. Anal.
, vol.46
, pp. 309-334
-
-
Romeu, J.L.1
Ozturk, A.2
-
26
-
-
0001243428
-
Omnibus robust procedures for assessment of multivariate normality and detections of multivariate outliers
-
Amsterdam: North-Holland. p. 445-488
-
Singh A. Omnibus robust procedures for assessment of multivariate normality and detections of multivariate outliers. Multivariate Environmental Statistics. 1993;North-Holland, Amsterdam. p. 445-488.
-
(1993)
Multivariate Environmental Statistics
-
-
Singh, A.1
-
27
-
-
0001023081
-
Comparison of tests for bivariate normality with unknown parameters by transformation to an univariate statistic
-
Versluis C. Comparison of tests for bivariate normality with unknown parameters by transformation to an univariate statistic. Commun. Statist. Theory Methods. 25:1996;647-665.
-
(1996)
Commun. Statist. Theory Methods
, vol.25
, pp. 647-665
-
-
Versluis, C.1
-
29
-
-
0000494597
-
A test for multivariate normality based on sample entropy and projection pursuit
-
Zhu L., Wong H. L., Fang K. T. A test for multivariate normality based on sample entropy and projection pursuit. Journ. Statist. Plann. Inf. 45:1995;373-385.
-
(1995)
Journ. Statist. Plann. Inf.
, vol.45
, pp. 373-385
-
-
Zhu, L.1
Wong, H.L.2
Fang, K.T.3
|