메뉴 건너뛰기




Volumn 161, Issue 2, 2009, Pages 448-463

Learning a function from noisy samples at a finite sparse set of points

Author keywords

Learning theory; Quasi Monte Carlo methods; Regularization; Sampling theory

Indexed keywords


EID: 70449518406     PISSN: 00219045     EISSN: 10960430     Source Type: Journal    
DOI: 10.1016/j.jat.2008.11.003     Document Type: Article
Times cited : (1)

References (34)
  • 2
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950) 337-404
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 3
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory 39 3 (1993) 930-945
    • (1993) IEEE Trans. Inform. Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 4
    • 10844236506 scopus 로고    scopus 로고
    • Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise
    • Bissantz N., Hohage T., and Munk A. Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise. Inverse Problems 20 6 (2004) 1773-1789
    • (2004) Inverse Problems , vol.20 , Issue.6 , pp. 1773-1789
    • Bissantz, N.1    Hohage, T.2    Munk, A.3
  • 7
    • 13744264080 scopus 로고    scopus 로고
    • Regularized greedy algorithms for network training with data noise
    • Burger M., and Hofinger A. Regularized greedy algorithms for network training with data noise. Computing 74 (2005) 1-22
    • (2005) Computing , vol.74 , pp. 1-22
    • Burger, M.1    Hofinger, A.2
  • 8
    • 0035201779 scopus 로고    scopus 로고
    • Error bounds for approximation with neural networks
    • Burger M., and Neubauer A. Error bounds for approximation with neural networks. J. Approx. Theory 112 (2001) 235-250
    • (2001) J. Approx. Theory , vol.112 , pp. 235-250
    • Burger, M.1    Neubauer, A.2
  • 9
    • 0033477453 scopus 로고    scopus 로고
    • Weighted Sobolev interpolation inequalities on product spaces.
    • Chua S.-K. Weighted Sobolev interpolation inequalities on product spaces. Forum Math. 11 6 (1999) 647-658
    • (1999) Forum Math. , vol.11 , Issue.6 , pp. 647-658
    • Chua, S.-K.1
  • 10
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker F., and Smale S. On the mathematical foundations of learning. Bull. Amer. Math. Soc. N.S. 39 1 (2002) 1-49
    • (2002) Bull. Amer. Math. Soc. N.S. , vol.39 , Issue.1 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 12
    • 0029717957 scopus 로고    scopus 로고
    • A note on error bounds for approximation in inner product spaces
    • Dingankar A.T., and Sandberg I.W. A note on error bounds for approximation in inner product spaces. Circuits Syst. Signal Process. 15 4 (1996) 519-522
    • (1996) Circuits Syst. Signal Process. , vol.15 , Issue.4 , pp. 519-522
    • Dingankar, A.T.1    Sandberg, I.W.2
  • 13
    • 0031531584 scopus 로고    scopus 로고
    • Rates of convex approximation in non-Hilbert spaces
    • Donahue M.J., Gurvits L., Darken C., and Sontag E. Rates of convex approximation in non-Hilbert spaces. Constr. Approx. 13 2 (1997) 187-220
    • (1997) Constr. Approx. , vol.13 , Issue.2 , pp. 187-220
    • Donahue, M.J.1    Gurvits, L.2    Darken, C.3    Sontag, E.4
  • 15
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou Th., Pontil M., and Poggio T. Regularization networks and support vector machines. Adv. Comput. Math. 13 1 (2000) 1-50
    • (2000) Adv. Comput. Math. , vol.13 , Issue.1 , pp. 1-50
    • Evgeniou, Th.1    Pontil, M.2    Poggio, T.3
  • 16
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi F., Jones M., and Poggio T. Regularization theory and neural networks architectures. Neural Comput. 7 (1995) 219-269
    • (1995) Neural Comput. , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 17
    • 84966255914 scopus 로고
    • Asymptotic theory of filtering for linear operator equations with discrete noisy data
    • Groetsch C.W., and Vogel C.R. Asymptotic theory of filtering for linear operator equations with discrete noisy data. Math. Comp. 49 (1987) 499-506
    • (1987) Math. Comp. , vol.49 , pp. 499-506
    • Groetsch, C.W.1    Vogel, C.R.2
  • 19
    • 0042234348 scopus 로고
    • Über die Diskrepanz mehrdimensionaler Folgen mod. 1.
    • Hlawka E. Über die Diskrepanz mehrdimensionaler Folgen mod. 1. Math. Zeitschr. 77 (1961) 273-284
    • (1961) Math. Zeitschr. , vol.77 , pp. 273-284
    • Hlawka, E.1
  • 21
    • 33750610677 scopus 로고    scopus 로고
    • Nonlinear function approximation: Computing smooth solutions with an adaptive greedy algorithm
    • Hofinger A. Nonlinear function approximation: Computing smooth solutions with an adaptive greedy algorithm. J. Approx. Theory 143 2 (2006) 159-175
    • (2006) J. Approx. Theory , vol.143 , Issue.2 , pp. 159-175
    • Hofinger, A.1
  • 22
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • Jones L.K. A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Ann. Statist. 20 1 (1992) 608-613
    • (1992) Ann. Statist. , vol.20 , Issue.1 , pp. 608-613
    • Jones, L.K.1
  • 25
    • 0001595602 scopus 로고    scopus 로고
    • Comparison of parameter choice methods for regularization with discrete noisy data
    • Lukas M.A. Comparison of parameter choice methods for regularization with discrete noisy data. Inverse Probl. 14 (1998) 161-184
    • (1998) Inverse Probl. , vol.14 , pp. 161-184
    • Lukas, M.A.1
  • 26
    • 84968487240 scopus 로고
    • Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind
    • Nashed M.Z., and Wahba G. Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind. Math. Comp. 28 (1974) 69-80
    • (1974) Math. Comp. , vol.28 , pp. 69-80
    • Nashed, M.Z.1    Wahba, G.2
  • 28
    • 0033480745 scopus 로고    scopus 로고
    • Generalization bounds for function approximation from scattered noisy data
    • Niyogi P., and Girosi F. Generalization bounds for function approximation from scattered noisy data. Adv. Comput. Math. 10 (1999) 51-80
    • (1999) Adv. Comput. Math. , vol.10 , pp. 51-80
    • Niyogi, P.1    Girosi, F.2
  • 29
    • 0002522806 scopus 로고    scopus 로고
    • When are quasi-Monte Carlo algorithms efficient for high dimensional integration?
    • Sloan I.H., and Woźniakowski H. When are quasi-Monte Carlo algorithms efficient for high dimensional integration?. J. Complexity 14 (1998) 1-33
    • (1998) J. Complexity , vol.14 , pp. 1-33
    • Sloan, I.H.1    Woźniakowski, H.2
  • 30
    • 3042850649 scopus 로고    scopus 로고
    • Shannon sampling and function reconstruction from point values
    • Smale S., and Zhou D.-X. Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. N.S. 41 3 (2004) 279-305
    • (2004) Bull. Amer. Math. Soc. N.S. , vol.41 , Issue.3 , pp. 279-305
    • Smale, S.1    Zhou, D.-X.2
  • 32
    • 34548525401 scopus 로고    scopus 로고
    • Approximation in learning theory
    • Temlyakov V.N. Approximation in learning theory. Constr. Approx. 27 1 (2008) 33-74
    • (2008) Constr. Approx. , vol.27 , Issue.1 , pp. 33-74
    • Temlyakov, V.N.1
  • 33
    • 21144435474 scopus 로고    scopus 로고
    • Nonlinear methods of approximation
    • Temlyakov V.N. Nonlinear methods of approximation. Found. Comput. Math. 3 1 (2003) 33-107
    • (2003) Found. Comput. Math. , vol.3 , Issue.1 , pp. 33-107
    • Temlyakov, V.N.1
  • 34
    • 0002548979 scopus 로고
    • Some applications of multivariate integration by parts.
    • Zaremba S.K. Some applications of multivariate integration by parts. Ann. Polon. Math. 21 (1968) 85-96
    • (1968) Ann. Polon. Math. , vol.21 , pp. 85-96
    • Zaremba, S.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.