메뉴 건너뛰기




Volumn , Issue , 2005, Pages 798-803

Unsupervised dimensionality estimation and manifold learning in high-dimensional spaces by tensor voting

Author keywords

[No Author keywords available]

Indexed keywords

DIMENSIONALITY ESTIMATION; GLOBAL OPERATIONS; HIGH DIMENSIONAL SPACES; INFORMATION PROPAGATION; MANIFOLD LEARNING; NEIGHBORING POINT; NONLINEAR MANIFOLDS; RELIABLE ESTIMATES;

EID: 84880738109     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (35)

References (16)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • DOI 10.1162/089976603321780317
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003. (Pubitemid 37049796)
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 0032070312 scopus 로고    scopus 로고
    • Intrinsic dimensionality estimation with optimally topology preserving maps
    • J. Bruske and G. Sommer. Intrinsic dimensionality estimation with optimally topology preserving maps. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(5):572-575, May 1998. (Pubitemid 128741339)
    • (1998) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.20 , Issue.5 , pp. 572-575
    • Bruske, J.1    Sommer, G.2
  • 4
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic entropic graphs for dimension and entropy estimation in manifold learning
    • Aug.
    • J. Costa and A.O. Hero. Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. on Signal Process., 52(8):2210-2221, Aug. 2004.
    • (2004) IEEE Trans. on Signal Process. , vol.52 , Issue.8 , pp. 2210-2221
    • Costa, J.1    Hero, A.O.2
  • 5
    • 84899009769 scopus 로고    scopus 로고
    • Global versus local methods in nonlinear dimensionality reduction
    • MIT Press, Cambridge, MA
    • V. de Silva and J.B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction. In Advances in Neural Information Processing Systems 15, pages 705-712. MIT Press, Cambridge, MA, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 705-712
    • De Silva, V.1    Tenenbaum, J.B.2
  • 6
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: New tools for nonlinear dimensionality reduction
    • D. Donoho and C. Grimes. Hessian eigenmaps: new tools for nonlinear dimensionality reduction. In Proceedings of National Academy of Science, pages 5591-5596, 2003.
    • (2003) Proceedings of National Academy of Science , pp. 5591-5596
    • Donoho, D.1    Grimes, C.2
  • 7
    • 85156237082 scopus 로고    scopus 로고
    • Intrinsic dimension estimation using packing numbers
    • MIT Press, Cambridge, MA
    • B. Kégl. Intrinsic dimension estimation using packing numbers. In Advances in Neural Information Processing Systems 15, pages 681-688. MIT Press, Cambridge, MA, 2005.
    • (2005) Advances in Neural Information Processing Systems , vol.15 , pp. 681-688
    • Kégl, B.1
  • 8
    • 78649400333 scopus 로고    scopus 로고
    • Maximum likelihood estimation of intrinsic dimension
    • MIT Press, Cambridge, MA
    • E. Levina and P. Bickel. Maximum likelihood estimation of intrinsic dimension. In Advances in Neural Information Processing Systems 17, pages 777-784. MIT Press, Cambridge, MA, 2005.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 777-784
    • Levina, E.1    Bickel, P.2
  • 10
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323-2326, 2000. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 11
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • L. K. Saul and S. T. Roweis. Think globally, fit locally: unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 4:119-155, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 12
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A.J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 14
    • 10944266507 scopus 로고    scopus 로고
    • Automatic alignment of local representations
    • Cambridge, MA, MIT Press
    • Y.W. Teh and S. Roweis. Automatic alignment of local representations. In Advances in Neural Information Processing Systems 15, pages 841-848, Cambridge, MA, 2003. MIT Press.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 841-848
    • Teh, Y.W.1    Roweis, S.2
  • 15
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.