-
1
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
DOI 10.1162/089976603321780317
-
M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003. (Pubitemid 37049796)
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
3
-
-
0032070312
-
Intrinsic dimensionality estimation with optimally topology preserving maps
-
J. Bruske and G. Sommer. Intrinsic dimensionality estimation with optimally topology preserving maps. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(5):572-575, May 1998. (Pubitemid 128741339)
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.5
, pp. 572-575
-
-
Bruske, J.1
Sommer, G.2
-
4
-
-
3543131272
-
Geodesic entropic graphs for dimension and entropy estimation in manifold learning
-
Aug.
-
J. Costa and A.O. Hero. Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. on Signal Process., 52(8):2210-2221, Aug. 2004.
-
(2004)
IEEE Trans. on Signal Process.
, vol.52
, Issue.8
, pp. 2210-2221
-
-
Costa, J.1
Hero, A.O.2
-
5
-
-
84899009769
-
Global versus local methods in nonlinear dimensionality reduction
-
MIT Press, Cambridge, MA
-
V. de Silva and J.B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction. In Advances in Neural Information Processing Systems 15, pages 705-712. MIT Press, Cambridge, MA, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 705-712
-
-
De Silva, V.1
Tenenbaum, J.B.2
-
6
-
-
0037948870
-
Hessian eigenmaps: New tools for nonlinear dimensionality reduction
-
D. Donoho and C. Grimes. Hessian eigenmaps: new tools for nonlinear dimensionality reduction. In Proceedings of National Academy of Science, pages 5591-5596, 2003.
-
(2003)
Proceedings of National Academy of Science
, pp. 5591-5596
-
-
Donoho, D.1
Grimes, C.2
-
7
-
-
85156237082
-
Intrinsic dimension estimation using packing numbers
-
MIT Press, Cambridge, MA
-
B. Kégl. Intrinsic dimension estimation using packing numbers. In Advances in Neural Information Processing Systems 15, pages 681-688. MIT Press, Cambridge, MA, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.15
, pp. 681-688
-
-
Kégl, B.1
-
8
-
-
78649400333
-
Maximum likelihood estimation of intrinsic dimension
-
MIT Press, Cambridge, MA
-
E. Levina and P. Bickel. Maximum likelihood estimation of intrinsic dimension. In Advances in Neural Information Processing Systems 17, pages 777-784. MIT Press, Cambridge, MA, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 777-784
-
-
Levina, E.1
Bickel, P.2
-
10
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
DOI 10.1126/science.290.5500.2323
-
S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323-2326, 2000. (Pubitemid 32041578)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
11
-
-
2342517502
-
Think globally, fit locally: Unsupervised learning of low dimensional manifolds
-
L. K. Saul and S. T. Roweis. Think globally, fit locally: unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 4:119-155, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 119-155
-
-
Saul, L.K.1
Roweis, S.T.2
-
12
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A.J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.J.2
Müller, K.-R.3
-
13
-
-
0035422823
-
N-dimensional tensor voting and application to epipolar geometry estimation
-
DOI 10.1109/34.946987
-
C.K. Tang, G. Medioni, and M.S. Lee. N-dimensional tensor voting and application to epipolar geometry estimation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 23(8):829-844, August 2001. (Pubitemid 32780011)
-
(2001)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.23
, Issue.8
, pp. 829-844
-
-
Tang, C.-K.1
Medioni, G.2
Lee, M.-S.3
-
14
-
-
10944266507
-
Automatic alignment of local representations
-
Cambridge, MA, MIT Press
-
Y.W. Teh and S. Roweis. Automatic alignment of local representations. In Advances in Neural Information Processing Systems 15, pages 841-848, Cambridge, MA, 2003. MIT Press.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 841-848
-
-
Teh, Y.W.1
Roweis, S.2
-
15
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
DOI 10.1126/science.290.5500.2319
-
J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323, 2000. (Pubitemid 32041577)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
|