메뉴 건너뛰기




Volumn 51, Issue 4, 2009, Pages 677-688

Rounding strategies for multiply imputed binary data

Author keywords

Linear mixed effects model; Missing data; Multiple imputation; Rounding

Indexed keywords

BINARY DATA; CONTINUOUS DATA; DISCRETE DATA; DISCRETE VARIABLES; GAUSSIANS; INCOMPLETE DATA; LINEAR MIXED-EFFECTS MODEL; MISSING DATA; MULTIPLE IMPUTATION; ROUNDING;

EID: 70350716098     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.200900018     Document Type: Article
Times cited : (13)

References (38)
  • 1
    • 0034339545 scopus 로고    scopus 로고
    • Multiple imputation for missing data: a cautionary tale
    • Allison, P. D. (2000). Multiple imputation for missing data: a cautionary tale. Sociological Methods and Research 28, 301-309.
    • (2000) Sociological Methods and Research , vol.28 , pp. 301-309
    • Allison, P.D.1
  • 2
    • 0033619671 scopus 로고    scopus 로고
    • Performance of a general location model with an ignorable missing data assumption in a multivariate mental health services study
    • Belin, T. R., Hu, M. Y., Young, A. S. and Grusky, O. (1999). Performance of a general location model with an ignorable missing data assumption in a multivariate mental health services study. Statistics in Medicine 18, 3123-3135.
    • (1999) Statistics in Medicine , vol.18 , pp. 3123-3135
    • Belin, T.R.1    Hu, M.Y.2    Young, A.S.3    Grusky, O.4
  • 3
    • 0034432599 scopus 로고    scopus 로고
    • Using multiple imputation to incorporate cases with missing items in a mental health services study
    • Belin, T. R., Hu, M. Y., Young, A. S. and Grusky, O. (2000). Using multiple imputation to incorporate cases with missing items in a mental health services study. Health Services and Outcome Research Methodology 1, 7-22.
    • (2000) Health Services and Outcome Research Methodology , vol.1 , pp. 7-22
    • Belin, T.R.1    Hu, M.Y.2    Young, A.S.3    Grusky, O.4
  • 4
    • 33847711413 scopus 로고    scopus 로고
    • Robustness of a multivariate normal approximation for imputation of incomplete binary data
    • Bernaards, C. A., Belin, T. R. and Schafer, J. L. (2007). Robustness of a multivariate normal approximation for imputation of incomplete binary data. Statistics in Medicine 26, 1368-1382.
    • (2007) Statistics in Medicine , vol.26 , pp. 1368-1382
    • Bernaards, C.A.1    Belin, T.R.2    Schafer, J.L.3
  • 5
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L. M., Schafer, J. L. and Kam, C. H. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods 6, 330-351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.H.3
  • 6
    • 10944236293 scopus 로고    scopus 로고
    • Simulation-driven inferences for multiply imputed longitudinal datasets
    • Demirtas, H. (2004). Simulation-driven inferences for multiply imputed longitudinal datasets. Statistica Neerlandica 58, 466-482.
    • (2004) Statistica Neerlandica , vol.58 , pp. 466-482
    • Demirtas, H.1
  • 7
    • 23244447184 scopus 로고    scopus 로고
    • Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ig- norable drop-out
    • Demirtas, H. (2005). Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ig- norable drop-out. Statistics in Medicine 24, 2345-2363.
    • (2005) Statistics in Medicine , vol.24 , pp. 2345-2363
    • Demirtas, H.1
  • 8
    • 33947702607 scopus 로고    scopus 로고
    • On the performance of bias-reduction techniques for variance estimation in approximate Bayesianbootstrap imputation
    • Demirtas, H., Arguelles, L. M., Chung, H. and Hedeker, D. (2007). On the performance of bias-reduction techniques for variance estimation in approximate Bayesianbootstrap imputation. Computational Statistics and Data Analysis 51, 4064-4068.
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 4064-4068
    • Demirtas, H.1    Arguelles, L.M.2    Chung, H.3    Hedeker, D.4
  • 9
    • 33846837287 scopus 로고    scopus 로고
    • Gaussianization-based quasi-imputation and expansion strategies for incomplete correlated binary responses
    • Demirtas, H. and Hedeker, D. (2007). Gaussianization-based quasi-imputation and expansion strategies for incomplete correlated binary responses. Statistics in Medicine 26, 782-799.
    • (2007) Statistics in Medicine , vol.26 , pp. 782-799
    • Demirtas, H.1    Hedeker, D.2
  • 10
    • 0042066687 scopus 로고    scopus 로고
    • On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out
    • Demirtas, H. and Schafer, J. L. (2003). On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Statistics in Medicine 22, 2553-2575.
    • (2003) Statistics in Medicine , vol.22 , pp. 2553-2575
    • Demirtas, H.1    Schafer, J.L.2
  • 13
    • 0003860037 scopus 로고    scopus 로고
    • Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (Eds.) Chapman & Hall, London
    • Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (Eds.) (1996). Markov Chain Monte Carlo in Practice, Chapman & Hall, London.
    • (1996) Markov Chain Monte Carlo in Practice
  • 14
    • 34250686456 scopus 로고    scopus 로고
    • Multiple imputation review of theory implementation and software
    • Harel, O. and Zhou, X. H. (2007). Multiple imputation review of theory implementation and software. Sta- tistics in Medicine 26, 3057-3077.
    • (2007) Statistics in Medicine , vol.26 , pp. 3057-3077
    • Harel, O.1    Zhou, X.H.2
  • 15
    • 0002105479 scopus 로고    scopus 로고
    • Application of random-effects pattern-mixture models for missing data in longitudinal studies
    • Hedeker, D. and Gibbons, R. D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods 2, 64-78.
    • (1997) Psychological Methods , vol.2 , pp. 64-78
    • Hedeker, D.1    Gibbons, R.D.2
  • 16
    • 33846873244 scopus 로고    scopus 로고
    • Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models
    • Horton, N. J. and Kleinman, K. P. (2007). Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models. American Statistician 61, 79-90.
    • (2007) American Statistician , vol.61 , pp. 79-90
    • Horton, N.J.1    Kleinman, K.P.2
  • 17
    • 0242710940 scopus 로고    scopus 로고
    • A potential for bias when rounding in multiple imputation
    • Horton, N. J., Lipsitz, S. R. and Parzen, M. (2003). A potential for bias when rounding in multiple imputation. American Statistician 57, 229-232.
    • (2003) American Statistician , vol.57 , pp. 229-232
    • Horton, N.J.1    Lipsitz, S.R.2    Parzen, M.3
  • 18
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 20
    • 0002344593 scopus 로고    scopus 로고
    • A multivariate technique for multiply imputing missing values using a sequence of regression models
    • Raghunathan, T. E., Lepkowski, J. M., van Hoewyk, J. and Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 27, 85-95.
    • (2001) Survey Methodology , vol.27 , pp. 85-95
    • Raghunathan, T.E.1    Lepkowski, J.M.2    van Hoewyk, J.3    Solenberger, P.4
  • 22
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 25
    • 8644242820 scopus 로고    scopus 로고
    • SAS Institute Version 8.2, North Carolina
    • SAS Institute (2001). Stat User's Guide, Version 8.2, North Carolina.
    • (2001) Stat User's Guide
  • 30
    • 0004211748 scopus 로고    scopus 로고
    • Multiple imputation with PAN
    • Sayer, A. G. and Collins, L. M. (Eds.), American Psychological Association, Washington, DC
    • Schafer, J. L. (2001). Multiple imputation with PAN. In Sayer, A. G. and Collins, L. M. (Eds.), New Methods for the Analysis of Change, American Psychological Association, Washington, DC, 355-377.
    • (2001) New Methods for the Analysis of Change , pp. 355-377
    • Schafer, J.L.1
  • 31
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: our view of the state of the art
    • Schafer, J. L. and Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological Methods 7, 147-177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 32
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing-data problems: a data analyst's perspective
    • Schafer, J. L. and Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: a data analyst's perspective. Multivariate Behavioral Research 33, 545-571.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 33
    • 0036017469 scopus 로고    scopus 로고
    • Computational strategies for multivariate linear mixed-effects models with missing values
    • Schafer, J. L. and Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics 11, 437-457.
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , pp. 437-457
    • Schafer, J.L.1    Yucel, R.M.2
  • 35
    • 33750050943 scopus 로고    scopus 로고
    • Statistical Solutions Ltd. Version 3.0, Cork, Ireland
    • Statistical Solutions Ltd. (2001). SOLAS for Missing Data Analysis, Version 3.0, Cork, Ireland.
    • (2001) SOLAS for Missing Data Analysis
  • 36
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of American Statistical Association 82, 528-540.
    • (1987) Journal of American Statistical Association , vol.82 , pp. 528-540
    • Tanner, M.A.1    Wong, W.H.2
  • 38
    • 45749110814 scopus 로고    scopus 로고
    • Using calibration to improve rounding in imputation
    • Yucel, R. M., He, Y. and Zaslavsky, A. M. (2008). Using calibration to improve rounding in imputation. The American Statistician 62, 125-129.
    • (2008) The American Statistician , vol.62 , pp. 125-129
    • Yucel, R.M.1    He, Y.2    Zaslavsky, A.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.