-
1
-
-
0034339545
-
Multiple imputation for missing data: a cautionary tale
-
Allison, P. D. (2000). Multiple imputation for missing data: a cautionary tale. Sociological Methods and Research 28, 301-309.
-
(2000)
Sociological Methods and Research
, vol.28
, pp. 301-309
-
-
Allison, P.D.1
-
2
-
-
0033619671
-
Performance of a general location model with an ignorable missing data assumption in a multivariate mental health services study
-
Belin, T. R., Hu, M. Y., Young, A. S. and Grusky, O. (1999). Performance of a general location model with an ignorable missing data assumption in a multivariate mental health services study. Statistics in Medicine 18, 3123-3135.
-
(1999)
Statistics in Medicine
, vol.18
, pp. 3123-3135
-
-
Belin, T.R.1
Hu, M.Y.2
Young, A.S.3
Grusky, O.4
-
3
-
-
0034432599
-
Using multiple imputation to incorporate cases with missing items in a mental health services study
-
Belin, T. R., Hu, M. Y., Young, A. S. and Grusky, O. (2000). Using multiple imputation to incorporate cases with missing items in a mental health services study. Health Services and Outcome Research Methodology 1, 7-22.
-
(2000)
Health Services and Outcome Research Methodology
, vol.1
, pp. 7-22
-
-
Belin, T.R.1
Hu, M.Y.2
Young, A.S.3
Grusky, O.4
-
4
-
-
33847711413
-
Robustness of a multivariate normal approximation for imputation of incomplete binary data
-
Bernaards, C. A., Belin, T. R. and Schafer, J. L. (2007). Robustness of a multivariate normal approximation for imputation of incomplete binary data. Statistics in Medicine 26, 1368-1382.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 1368-1382
-
-
Bernaards, C.A.1
Belin, T.R.2
Schafer, J.L.3
-
5
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
Collins, L. M., Schafer, J. L. and Kam, C. H. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods 6, 330-351.
-
(2001)
Psychological Methods
, vol.6
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.H.3
-
6
-
-
10944236293
-
Simulation-driven inferences for multiply imputed longitudinal datasets
-
Demirtas, H. (2004). Simulation-driven inferences for multiply imputed longitudinal datasets. Statistica Neerlandica 58, 466-482.
-
(2004)
Statistica Neerlandica
, vol.58
, pp. 466-482
-
-
Demirtas, H.1
-
7
-
-
23244447184
-
Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ig- norable drop-out
-
Demirtas, H. (2005). Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ig- norable drop-out. Statistics in Medicine 24, 2345-2363.
-
(2005)
Statistics in Medicine
, vol.24
, pp. 2345-2363
-
-
Demirtas, H.1
-
8
-
-
33947702607
-
On the performance of bias-reduction techniques for variance estimation in approximate Bayesianbootstrap imputation
-
Demirtas, H., Arguelles, L. M., Chung, H. and Hedeker, D. (2007). On the performance of bias-reduction techniques for variance estimation in approximate Bayesianbootstrap imputation. Computational Statistics and Data Analysis 51, 4064-4068.
-
(2007)
Computational Statistics and Data Analysis
, vol.51
, pp. 4064-4068
-
-
Demirtas, H.1
Arguelles, L.M.2
Chung, H.3
Hedeker, D.4
-
9
-
-
33846837287
-
Gaussianization-based quasi-imputation and expansion strategies for incomplete correlated binary responses
-
Demirtas, H. and Hedeker, D. (2007). Gaussianization-based quasi-imputation and expansion strategies for incomplete correlated binary responses. Statistics in Medicine 26, 782-799.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 782-799
-
-
Demirtas, H.1
Hedeker, D.2
-
10
-
-
0042066687
-
On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out
-
Demirtas, H. and Schafer, J. L. (2003). On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Statistics in Medicine 22, 2553-2575.
-
(2003)
Statistics in Medicine
, vol.22
, pp. 2553-2575
-
-
Demirtas, H.1
Schafer, J.L.2
-
11
-
-
0002629270
-
Maximum likelihood estimation from incomplete data via the EM algorithm
-
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of Royal Statistical Society, Series B 39, 1-38.
-
(1977)
Journal of Royal Statistical Society, Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
13
-
-
0003860037
-
-
Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (Eds.) Chapman & Hall, London
-
Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (Eds.) (1996). Markov Chain Monte Carlo in Practice, Chapman & Hall, London.
-
(1996)
Markov Chain Monte Carlo in Practice
-
-
-
14
-
-
34250686456
-
Multiple imputation review of theory implementation and software
-
Harel, O. and Zhou, X. H. (2007). Multiple imputation review of theory implementation and software. Sta- tistics in Medicine 26, 3057-3077.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 3057-3077
-
-
Harel, O.1
Zhou, X.H.2
-
15
-
-
0002105479
-
Application of random-effects pattern-mixture models for missing data in longitudinal studies
-
Hedeker, D. and Gibbons, R. D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods 2, 64-78.
-
(1997)
Psychological Methods
, vol.2
, pp. 64-78
-
-
Hedeker, D.1
Gibbons, R.D.2
-
16
-
-
33846873244
-
Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models
-
Horton, N. J. and Kleinman, K. P. (2007). Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models. American Statistician 61, 79-90.
-
(2007)
American Statistician
, vol.61
, pp. 79-90
-
-
Horton, N.J.1
Kleinman, K.P.2
-
17
-
-
0242710940
-
A potential for bias when rounding in multiple imputation
-
Horton, N. J., Lipsitz, S. R. and Parzen, M. (2003). A potential for bias when rounding in multiple imputation. American Statistician 57, 229-232.
-
(2003)
American Statistician
, vol.57
, pp. 229-232
-
-
Horton, N.J.1
Lipsitz, S.R.2
Parzen, M.3
-
18
-
-
0020333131
-
Random-effects models for longitudinal data
-
Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963-974.
-
(1982)
Biometrics
, vol.38
, pp. 963-974
-
-
Laird, N.M.1
Ware, J.H.2
-
20
-
-
0002344593
-
A multivariate technique for multiply imputing missing values using a sequence of regression models
-
Raghunathan, T. E., Lepkowski, J. M., van Hoewyk, J. and Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 27, 85-95.
-
(2001)
Survey Methodology
, vol.27
, pp. 85-95
-
-
Raghunathan, T.E.1
Lepkowski, J.M.2
van Hoewyk, J.3
Solenberger, P.4
-
22
-
-
0017133178
-
Inference and missing data
-
Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
25
-
-
8644242820
-
-
SAS Institute Version 8.2, North Carolina
-
SAS Institute (2001). Stat User's Guide, Version 8.2, North Carolina.
-
(2001)
Stat User's Guide
-
-
-
27
-
-
0006940110
-
-
The Pennsylvania State University, Department of Statistics, University Park, PA
-
Schafer, J. L. (1997b). PAN: Multiple Imputation for Multivariate Panel Data, Software Library for S-PLUS, The Pennsylvania State University, Department of Statistics, University Park, PA.
-
(1997)
PAN: Multiple Imputation for Multivariate Panel Data, Software Library for S-PLUS
-
-
Schafer, J.L.1
-
29
-
-
0003960664
-
-
The Pennsylvania State University, Department of Statistics, University Park, PA
-
Schafer, J. L. (1999b). NORM: Multiple Imputation of Incomplete Multivariate Data Under a Normal Model, Software Library for S-PLUS, The Pennsylvania State University, Department of Statistics, University Park, PA.
-
(1999)
NORM: Multiple Imputation of Incomplete Multivariate Data Under a Normal Model, Software Library for S-PLUS
-
-
Schafer, J.L.1
-
30
-
-
0004211748
-
Multiple imputation with PAN
-
Sayer, A. G. and Collins, L. M. (Eds.), American Psychological Association, Washington, DC
-
Schafer, J. L. (2001). Multiple imputation with PAN. In Sayer, A. G. and Collins, L. M. (Eds.), New Methods for the Analysis of Change, American Psychological Association, Washington, DC, 355-377.
-
(2001)
New Methods for the Analysis of Change
, pp. 355-377
-
-
Schafer, J.L.1
-
31
-
-
85047673373
-
Missing data: our view of the state of the art
-
Schafer, J. L. and Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological Methods 7, 147-177.
-
(2002)
Psychological Methods
, vol.7
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
32
-
-
0032219074
-
Multiple imputation for multivariate missing-data problems: a data analyst's perspective
-
Schafer, J. L. and Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: a data analyst's perspective. Multivariate Behavioral Research 33, 545-571.
-
(1998)
Multivariate Behavioral Research
, vol.33
, pp. 545-571
-
-
Schafer, J.L.1
Olsen, M.K.2
-
33
-
-
0036017469
-
Computational strategies for multivariate linear mixed-effects models with missing values
-
Schafer, J. L. and Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics 11, 437-457.
-
(2002)
Journal of Computational and Graphical Statistics
, vol.11
, pp. 437-457
-
-
Schafer, J.L.1
Yucel, R.M.2
-
34
-
-
0003742458
-
-
DataAnalysis Products Division, Insightful Corp., Seattle, WA
-
Schimert, J., Schafer, J. L., Hesterberg, T., Fraley, C. and Clarkson, D. B. (2001). Analyzing Data with Missing Values in S-plus. DataAnalysis Products Division, Insightful Corp., Seattle, WA.
-
(2001)
Analyzing Data with Missing Values in S-plus
-
-
Schimert, J.1
Schafer, J.L.2
Hesterberg, T.3
Fraley, C.4
Clarkson, D.B.5
-
35
-
-
33750050943
-
-
Statistical Solutions Ltd. Version 3.0, Cork, Ireland
-
Statistical Solutions Ltd. (2001). SOLAS for Missing Data Analysis, Version 3.0, Cork, Ireland.
-
(2001)
SOLAS for Missing Data Analysis
-
-
-
36
-
-
84950758368
-
The calculation of posterior distributions by data augmentation
-
Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of American Statistical Association 82, 528-540.
-
(1987)
Journal of American Statistical Association
, vol.82
, pp. 528-540
-
-
Tanner, M.A.1
Wong, W.H.2
-
38
-
-
45749110814
-
Using calibration to improve rounding in imputation
-
Yucel, R. M., He, Y. and Zaslavsky, A. M. (2008). Using calibration to improve rounding in imputation. The American Statistician 62, 125-129.
-
(2008)
The American Statistician
, vol.62
, pp. 125-129
-
-
Yucel, R.M.1
He, Y.2
Zaslavsky, A.M.3
|