메뉴 건너뛰기




Volumn 26, Issue 4, 2007, Pages 782-799

Gaussianization-based quasi-imputation and expansion strategies for incomplete correlated binary responses

Author keywords

Longitudinal data; Missing data; Multiple imputation; Non ignorable non response

Indexed keywords

ALGORITHM; ARTICLE; DATA ANALYSIS; LONGITUDINAL STUDY; MULTIVARIATE ANALYSIS; NORMAL DISTRIBUTION; OBESITY; STATISTICAL MODEL;

EID: 33846837287     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.2560     Document Type: Article
Times cited : (24)

References (35)
  • 2
    • 0001354633 scopus 로고
    • Formalizing subjective notions about the effect of non-respondents in sample surveys
    • Rubin DB. Formalizing subjective notions about the effect of non-respondents in sample surveys. Journal of the American Statistical Association 1977; 72:538-543.
    • (1977) Journal of the American Statistical Association , vol.72 , pp. 538-543
    • Rubin, D.B.1
  • 7
    • 0004211748 scopus 로고    scopus 로고
    • Multiple imputation with PAN
    • In Sayer AG, Collins LM (eds). American Psychological Association: Washington, DC
    • Schafer JL. Multiple imputation with PAN. In Sayer AG, Collins LM (eds). New Methods for the Analysis of Change. American Psychological Association: Washington, DC, 2001; 355-377.
    • (2001) New Methods for the Analysis of Change , pp. 355-377
    • Schafer, J.L.1
  • 8
    • 0036017469 scopus 로고    scopus 로고
    • Computational strategies for multivariate linear mixed-effects models with missing values
    • Schafer JL, Yucel RM. Computational strategies for multivariate linear mixed-effects models with missing values. Journal of Computational and Graphical Statistics 2002; 11:437-457.
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , pp. 437-457
    • Schafer, J.L.1    Yucel, R.M.2
  • 9
    • 0033637095 scopus 로고    scopus 로고
    • Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies
    • Liu M, Taylor JM, Belin TR. Multiple imputation and posterior simulation for multivariate missing data in longitudinal studies. Biometrics 2000; 56:1157-1163.
    • (2000) Biometrics , vol.56 , pp. 1157-1163
    • Liu, M.1    Taylor, J.M.2    Belin, T.R.3
  • 10
    • 0042066687 scopus 로고    scopus 로고
    • On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out
    • Demirtas H, Schafer JL. On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Statistics in Medicine 2003; 22:2553-2575.
    • (2003) Statistics in Medicine , vol.22 , pp. 2553-2575
    • Demirtas, H.1    Schafer, J.L.2
  • 11
    • 23244447184 scopus 로고    scopus 로고
    • Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out
    • Demirtas H. Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out. Statistics in Medicine 2005; 24:2345-2363.
    • (2005) Statistics in Medicine , vol.24 , pp. 2345-2363
    • Demirtas, H.1
  • 14
    • 21144460126 scopus 로고
    • Imputation of missing categorical data by maximizing internal consistency
    • van Buuren S, van Rijckevorsel JLA. Imputation of missing categorical data by maximizing internal consistency. Psychometrika 1992; 57:567-580.
    • (1992) Psychometrika , vol.57 , pp. 567-580
    • van Buuren, S.1    van Rijckevorsel, J.L.A.2
  • 18
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine 1999; 18:681-694.
    • (1999) Statistics in Medicine , vol.18 , pp. 681-694
    • van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 19
    • 0029157096 scopus 로고
    • A multiple imputation strategy for clinical trials with truncation of patient data
    • Lavori PW, Dawson R, Shera D. A multiple imputation strategy for clinical trials with truncation of patient data. Statistics in Medicine 1995; 14:1913-1925.
    • (1995) Statistics in Medicine , vol.14 , pp. 1913-1925
    • Lavori, P.W.1    Dawson, R.2    Shera, D.3
  • 20
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 21
    • 0034339545 scopus 로고    scopus 로고
    • Multiple imputation for missing data: A cautionary tale
    • Allison PD. Multiple imputation for missing data: a cautionary tale. Sociological Methods and Research 2000; 28:301-309.
    • (2000) Sociological Methods and Research , vol.28 , pp. 301-309
    • Allison, P.D.1
  • 22
    • 84952511998 scopus 로고
    • A method for generating high-dimensional multivariate binary outcomes
    • Emrich LJ, Piedmonte RP. A method for generating high-dimensional multivariate binary outcomes. American Statistician 1991; 45:302-304.
    • (1991) American Statistician , vol.45 , pp. 302-304
    • Emrich, L.J.1    Piedmonte, R.P.2
  • 25
    • 10944236293 scopus 로고    scopus 로고
    • Simulation-driven inferences for multiply imputed longitudinal datasets
    • Demirtas H. Simulation-driven inferences for multiply imputed longitudinal datasets. Statistica Neerlandica 2004; 58:466-482.
    • (2004) Statistica Neerlandica , vol.58 , pp. 466-482
    • Demirtas, H.1
  • 26
    • 0042538892 scopus 로고    scopus 로고
    • A simple method for generating correlated binary variates
    • Park GP, Park T, Shin DW. A simple method for generating correlated binary variates. American Statistician 1996; 50:306-310.
    • (1996) American Statistician , vol.50 , pp. 306-310
    • Park, G.P.1    Park, T.2    Shin, D.W.3
  • 27
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins LM, Schafer JL, Kam CH. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods 2001; 6:330-351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.H.3
  • 29
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang K, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.1    Zeger, S.L.2
  • 30
    • 0022673130 scopus 로고
    • Longitudinal data analysis for discrete and continuous outcomes
    • Zeger SL, Liang K. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42: 121-130.
    • (1986) Biometrics , vol.42 , pp. 121-130
    • Zeger, S.L.1    Liang, K.2
  • 32
    • 0041175330 scopus 로고    scopus 로고
    • The Muscatine children's obesity data reanalysed using pattern mixture models
    • Ekholm A, Skinner C. The Muscatine children's obesity data reanalysed using pattern mixture models. Applied Statistics 1998; 47:251-263.
    • (1998) Applied Statistics , vol.47 , pp. 251-263
    • Ekholm, A.1    Skinner, C.2
  • 33
    • 0036971533 scopus 로고    scopus 로고
    • A pattern-mixture model for longitudinal binary responses with nonignorable nonresponse
    • Birmingham J, Fitzmaurice GM. A pattern-mixture model for longitudinal binary responses with nonignorable nonresponse. Biometrics 2002; 58:989-996.
    • (2002) Biometrics , vol.58 , pp. 989-996
    • Birmingham, J.1    Fitzmaurice, G.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.