메뉴 건너뛰기




Volumn 24, Issue , 2005, Pages 407-463

Cooperative information sharing to improve distributed learning in multi-agent systems

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; HEURISTIC METHODS; INFORMATION ANALYSIS; LEARNING ALGORITHMS; MULTI AGENT SYSTEMS; ROUTERS;

EID: 31144432283     PISSN: 10769757     EISSN: 10769757     Source Type: Journal    
DOI: 10.1613/jair.1735     Document Type: Article
Times cited : (23)

References (65)
  • 2
    • 0004142943 scopus 로고    scopus 로고
    • Direct gradient-based reinforcement learning: I. Gradient estimation algorithms
    • Research School of Information Science and Engineering, Australian National University
    • Baxter, J., & Bartlett, P. L. (1999). Direct gradient-based reinforcement learning: I. Gradient estimation algorithms. Tech. rep., Research School of Information Science and Engineering, Australian National University.
    • (1999) Tech. Rep.
    • Baxter, J.1    Bartlett, P.L.2
  • 6
    • 0000719863 scopus 로고
    • Packet routing in dynamically changing networks: A reinforcement learning approach
    • Cowan, J. D., Tesauro, G., & Alspector, J. (Eds.)
    • Boyan, J. A., & Littman, M. L. (1993). Packet routing in dynamically changing networks: A reinforcement learning approach. In Cowan, J. D., Tesauro, G., & Alspector, J. (Eds.), Advances in Neural Information Processing Systems, Vol. 6, pp. 671-678.
    • (1993) Advances in Neural Information Processing Systems , vol.6 , pp. 671-678
    • Boyan, J.A.1    Littman, M.L.2
  • 8
    • 0000873984 scopus 로고    scopus 로고
    • AntNet: Distributed stigmergetic control for communications networks
    • Caro, G. D., & Dorigo, M. (1998a). AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 9, 317-365.
    • (1998) Journal of Artificial Intelligence Research , vol.9 , pp. 317-365
    • Caro, G.D.1    Dorigo, M.2
  • 10
    • 18544399451 scopus 로고
    • Industrial applications of distributed AI
    • Chaib-draa, B. (1995). Industrial applications of distributed AI. Communications of the ACM, 38(11), 49-53.
    • (1995) Communications of the ACM , vol.38 , Issue.11 , pp. 49-53
    • Chaib-Draa, B.1
  • 11
    • 0000644584 scopus 로고    scopus 로고
    • Archon: A distributed artificial intelligence system for industrial applications
    • O'Hare, G. M. P., & Jennings, N. R. (Eds.), Wiley
    • Cockburn, D., & Jennings, N. R. (1996). Archon: A distributed artificial intelligence system for industrial applications. In O'Hare, G. M. P., & Jennings, N. R. (Eds.), Foundations of Distributed Artificial Intelligence, pp. 319-344. Wiley.
    • (1996) Foundations of Distributed Artificial Intelligence , pp. 319-344
    • Cockburn, D.1    Jennings, N.R.2
  • 12
    • 0001064543 scopus 로고
    • Teamwork
    • Special Issue on Cognitive Science and Artificial Intelligence
    • Cohen, P. R., & Levesque, H. J. (1991). Teamwork. Nous, 55(4), 487-512. Special Issue on Cognitive Science and Artificial Intelligence.
    • (1991) Nous , vol.55 , Issue.4 , pp. 487-512
    • Cohen, P.R.1    Levesque, H.J.2
  • 14
    • 0001700825 scopus 로고
    • TAEMS: A framework for environment centered analysis and design of coordination mechanisms
    • O'Hare, G., &: Jennings, N. (Eds.), chap. 16. Wiley Inter-Science
    • Decker, K. (1995a). TAEMS: A framework for environment centered analysis and design of coordination mechanisms. In O'Hare, G., &: Jennings, N. (Eds.), Foundations of Distributed Artificial Intelligence, chap. 16. Wiley Inter-Science.
    • (1995) Foundations of Distributed Artificial Intelligence
    • Decker, K.1
  • 17
    • 84948987049 scopus 로고    scopus 로고
    • Holonic and Multi-Agent Systems for Manufacturing, chap. Multiagent-based process planning and scheduling in context of supply chains, Springer-Verlag, Heidelberg
    • Denkena, B., Zwich, M., & Woelk, P. (2004). Holonic and Multi-Agent Systems for Manufacturing, Vol. 2744/2004 of Lecture Notes in Computer Science, chap. Multiagent-based process planning and scheduling in context of supply chains, pp. 100-109. Springer-Verlag, Heidelberg.
    • (2004) Lecture Notes in Computer Science , vol.2744 , Issue.2004 , pp. 100-109
    • Denkena, B.1    Zwich, M.2    Woelk, P.3
  • 18
    • 0026225005 scopus 로고
    • Partial global planning: A coordination framework for distributed hypothesis formation
    • Durfee, E. H., & Lesser, V. (1991). Partial global planning: A coordination framework for distributed hypothesis formation. IEEE Transactions on Systems, Man, and Cybernetics, 21(5), 1167-1183.
    • (1991) IEEE Transactions on Systems, Man, and Cybernetics , vol.21 , Issue.5 , pp. 1167-1183
    • Durfee, E.H.1    Lesser, V.2
  • 22
    • 2442557843 scopus 로고    scopus 로고
    • Forming stable partnerships
    • Dutta, P. S., & Sen, S. (2003). Forming stable partnerships. Cognitive Systems Research, 4(3), 211-221.
    • (2003) Cognitive Systems Research , vol.4 , Issue.3 , pp. 211-221
    • Dutta, P.S.1    Sen, S.2
  • 23
    • 1442265466 scopus 로고    scopus 로고
    • Power systems stability control : Reinforcement learning framework
    • Ernst, D., Glavic, M., & Wehenkel, L. (2004). Power systems stability control : Reinforcement learning framework. IEEE Transactions on Power Systems, 19(1), 427-435.
    • (2004) IEEE Transactions on Power Systems , vol.19 , Issue.1 , pp. 427-435
    • Ernst, D.1    Glavic, M.2    Wehenkel, L.3
  • 25
    • 0030263767 scopus 로고    scopus 로고
    • Collaborative plans for complex group action
    • Grosz, B., & Kraus, S. (1996). Collaborative plans for complex group action. Artificial Intelligence, 86(2), 269-357.
    • (1996) Artificial Intelligence , vol.86 , Issue.2 , pp. 269-357
    • Grosz, B.1    Kraus, S.2
  • 28
    • 84974223844 scopus 로고
    • Commitments and conventions: The foundation of coordination in multi-agent systems
    • Jennings, N. R. (1993). Commitments and conventions: The foundation of coordination in multi-agent systems. The Knowledge Engineering Review, 8(3), 223-250.
    • (1993) The Knowledge Engineering Review , vol.8 , Issue.3 , pp. 223-250
    • Jennings, N.R.1
  • 29
    • 0029326031 scopus 로고
    • Controlling cooperative problem solving in industrial multi-agent systems using joint intentions
    • Jennings, N. R. (1995). Controlling cooperative problem solving in industrial multi-agent systems using joint intentions. Artificial Intelligence, 75(2), 195-240.
    • (1995) Artificial Intelligence , vol.75 , Issue.2 , pp. 195-240
    • Jennings, N.R.1
  • 31
    • 0012496995 scopus 로고    scopus 로고
    • Adept: An agent-based approach to business process management
    • Jennings, N. R., Norman, T. J., & Faratin, P. (1998). Adept: An agent-based approach to business process management. ACM SIGMOD, 27(4), 32-39.
    • (1998) ACM SIGMOD , vol.27 , Issue.4 , pp. 32-39
    • Jennings, N.R.1    Norman, T.J.2    Faratin, P.3
  • 32
    • 31144461730 scopus 로고    scopus 로고
    • O'Reilly Wireless Devcenter
    • Krag, T., &: Buettrich, S. (2004). Wireless Mesh Networking. O'Reilly Wireless Devcenter. http://www.oreillynet.com/pub/a/wireless/2004/01/22/wirelessmesh.html.
    • (2004) Wireless Mesh Networking
    • Krag, T.1    Buettrich, S.2
  • 34
    • 31144442004 scopus 로고
    • Distributed interpretation: A model and experiment
    • Bond, A. H., & Gasser, L. (Eds.), Morgan Kaufmann, San Mateo, CA
    • Lesser, V. R., &: Erman, L. D. (1988). Distributed interpretation: A model and experiment. In Bond, A. H., & Gasser, L. (Eds.), Readings in Distributed Artificial Intelligence, pp. 120-139. Morgan Kaufmann, San Mateo, CA.
    • (1988) Readings in Distributed Artificial Intelligence , pp. 120-139
    • Lesser, V.R.1    Erman, L.D.2
  • 39
    • 0030168518 scopus 로고    scopus 로고
    • Hidden state and reinforcement learning with instance-based state identification
    • Cybernetics 26
    • McCallum, R. A. (1996). Hidden state and reinforcement learning with instance-based state identification. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics 26), 464-473.
    • (1996) IEEE Transactions on Systems, Man and Cybernetics, Part B , pp. 464-473
    • McCallum, R.A.1
  • 41
    • 0004255908 scopus 로고    scopus 로고
    • chap. 13: Reinforcement Learning. McGraw-Hill
    • Mitchell, T. M. (1997). Machine Learning, chap. 13: Reinforcement Learning. McGraw-Hill.
    • (1997) Machine Learning
    • Mitchell, T.M.1
  • 42
    • 0342855202 scopus 로고    scopus 로고
    • The aaria agent architecture: From manufacturing requirements to agent-based system design
    • Parunak, H. V. D., Baker, A. D., & Clark, S. J. (2001). The aaria agent architecture: From manufacturing requirements to agent-based system design. Integrated Computer-Aided Engineering, 8(1), 45-58.
    • (2001) Integrated Computer-Aided Engineering , vol.8 , Issue.1 , pp. 45-58
    • Parunak, H.V.D.1    Baker, A.D.2    Clark, S.J.3
  • 48
    • 85153965130 scopus 로고
    • Reinforcement learning with soft state aggregation
    • Tesauro, G., Touretzky, D., & Leen, T. (Eds.), The MIT Press
    • Singh, S. P., Jaakkola, T., & Jordan, M. I. (1995). Reinforcement learning with soft state aggregation. In Tesauro, G., Touretzky, D., & Leen, T. (Eds.), Advances in Neural Information Processing Systems, Vol. 7, pp. 361-368. The MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 361-368
    • Singh, S.P.1    Jaakkola, T.2    Jordan, M.I.3
  • 49
    • 18144424551 scopus 로고    scopus 로고
    • TPOT-RL applied to network routing
    • Stone, P. (2000). TPOT-RL applied to network routing. In Proceedings of ICML 2000, pp. 935-942.
    • (2000) Proceedings of ICML 2000 , pp. 935-942
    • Stone, P.1
  • 52
    • 33847202724 scopus 로고
    • Learning to predict by the methods of temporal differences
    • Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3, 9-44.
    • (1988) Machine Learning , vol.3 , pp. 9-44
    • Sutton, R.S.1
  • 54
    • 0347090472 scopus 로고    scopus 로고
    • Auction-based effective bandwidth allocation mechanism
    • Takahashi, E., & Tanaka, Y. (2003). Auction-based effective bandwidth allocation mechanism. Telecommunications Systems, 24(2), 323-338.
    • (2003) Telecommunications Systems , vol.24 , Issue.2 , pp. 323-338
    • Takahashi, E.1    Tanaka, Y.2
  • 56
    • 0004141908 scopus 로고    scopus 로고
    • chap. 5: The Network Layer. Prentice Hall PTR
    • th edition)., chap. 5: The Network Layer. Prentice Hall PTR.
    • (2003) th Edition)
    • Tanenbaum, A.S.1
  • 57
    • 0036832958 scopus 로고    scopus 로고
    • Reinforcement learning for call admission control and routing under quality of service constraints in multimedia networks
    • Tong, H. (2002). Reinforcement learning for call admission control and routing under quality of service constraints in multimedia networks. Machine Learning, 49(2), 111-139.
    • (2002) Machine Learning , vol.49 , Issue.2 , pp. 111-139
    • Tong, H.1
  • 58
    • 0030735427 scopus 로고    scopus 로고
    • Distributed detection with multiple sensors: Part i - Fundamentals
    • Viswanathan, R., & Varshney, P. K. (1997). Distributed detection with multiple sensors: Part I - fundamentals. In Proceedings of the IEEE, Vol. 85-1, pp. 54-63.
    • (1997) Proceedings of the IEEE , vol.85 , Issue.1 , pp. 54-63
    • Viswanathan, R.1    Varshney, P.K.2
  • 59
    • 9544239260 scopus 로고    scopus 로고
    • Decentralized supply chain formation: A market protocol and competitive equilibrium analysis
    • Walsh, W. E., & Wellman, M. P. (2003). Decentralized supply chain formation: A market protocol and competitive equilibrium analysis. Journal of Artificial Intelligence Research, 19, 513-567.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 513-567
    • Walsh, W.E.1    Wellman, M.P.2
  • 60
    • 0004049893 scopus 로고
    • Ph.D. thesis, Psychology Department, University of Cambridge
    • Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. thesis, Psychology Department, University of Cambridge.
    • (1989) Learning from Delayed Rewards
    • Watkins, C.J.C.H.1
  • 63
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3), 229-256.
    • (1992) Machine Learning , vol.8 , Issue.3 , pp. 229-256
    • Williams, R.J.1
  • 64
    • 0030284198 scopus 로고    scopus 로고
    • A probabilistic framework for cooperative multi-agent distributed interpretation and optimization of communication
    • Xiang, Y. (1996). A probabilistic framework for cooperative multi-agent distributed interpretation and optimization of communication. Artificial Intelligence, 87(1-2), 295-342.
    • (1996) Artificial Intelligence , vol.87 , Issue.1-2 , pp. 295-342
    • Xiang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.