-
3
-
-
0001926010
-
Remarks concerning graphical models for time series and point processes
-
D. Brillinger. Remarks concerning graphical models for time series and point processes. Revista de Econometria, 16:1-23, 1996.
-
(1996)
Revista de Econometria
, vol.16
, pp. 1-23
-
-
Brillinger, D.1
-
4
-
-
65449165081
-
-
H. Cheng and P.-N. Tan. Semi-supervised learning with data calibration for long-term time series forecasting. In Proceedings of International Conference on Knowledge Discovery and Data Mining (SIGKDD-08), pages 133-141, 2008.
-
H. Cheng and P.-N. Tan. Semi-supervised learning with data calibration for long-term time series forecasting. In Proceedings of International Conference on Knowledge Discovery and Data Mining (SIGKDD-08), pages 133-141, 2008.
-
-
-
-
6
-
-
80053158041
-
-
D. Eaton and K. Murphy. Bayesian structure learning using dynamic programming and mcmc. In UAI, 2007.
-
D. Eaton and K. Murphy. Bayesian structure learning using dynamic programming and mcmc. In UAI, 2007.
-
-
-
-
8
-
-
0842288337
-
Inferring cellular networks using probabilistic graphical models science
-
N. Friedman. Inferring cellular networks using probabilistic graphical models science. Science, 303:799-805, 2004.
-
(2004)
Science
, vol.303
, pp. 799-805
-
-
Friedman, N.1
-
9
-
-
0034855363
-
-
K. Fujinaga, M. Nakai, H. Shimodaira, and S. Sagayama. Multiple-regression hidden markov model. In In Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP-01), pages 513-516, 2001.
-
K. Fujinaga, M. Nakai, H. Shimodaira, and S. Sagayama. Multiple-regression hidden markov model. In In Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP-01), pages 513-516, 2001.
-
-
-
-
11
-
-
34547980513
-
Recovering temporally rewiring networks: A model-based approach
-
F. Guo, S. Hanneke, W. Fu, and E. P. Xing. Recovering temporally rewiring networks: a model-based approach. In ICML, pages 321-328, 2007.
-
(2007)
ICML
, pp. 321-328
-
-
Guo, F.1
Hanneke, S.2
Fu, W.3
Xing, E.P.4
-
13
-
-
70049111780
-
Efficient structure learning of markov networks using l1-regularization
-
MIT Press, Cambridge, MA
-
S.-I. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of markov networks using l1-regularization. In Advances in Neural Information Processing Systems 19, pages 817-824. MIT Press, Cambridge, MA, 2007.
-
(2007)
Advances in Neural Information Processing Systems 19
, pp. 817-824
-
-
Lee, S.-I.1
Ganapathi, V.2
Koller, D.3
-
14
-
-
34547966875
-
Efficient l1 regularized logistic regression
-
S.-I. Lee, H. Lee, P. Abbeel, and A. Y. Ng. Efficient l1 regularized logistic regression. In AAAI, 2006.
-
(2006)
AAAI
-
-
Lee, S.-I.1
Lee, H.2
Abbeel, P.3
Ng, A.Y.4
-
17
-
-
33747163541
-
High dimensional graphs and variable selection with the lasso
-
N. Meinshausen and P. Buhlmann. High dimensional graphs and variable selection with the lasso. Annals of Statistics, 34(6):1436-1462, 2006.
-
(2006)
Annals of Statistics
, vol.34
, Issue.6
, pp. 1436-1462
-
-
Meinshausen, N.1
Buhlmann, P.2
-
19
-
-
0024610919
-
A tutorial on hidden markov models and selected applications in speech recognition
-
L. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77:257-286, 1989.
-
(1989)
Proceedings of the IEEE
, vol.77
, pp. 257-286
-
-
Rabiner, L.1
-
21
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist., 58(1):267-288, 1996.
-
(1996)
J. Royal. Statist
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
|