메뉴 건너뛰기




Volumn 47, Issue 11, 2009, Pages 3822-3833

Target detection with semisupervised kernel orthogonal subspace projection

Author keywords

Graph; Kernel method (KM); Kernel orthogonal subspace projection (KOSP); Manifold learning; Regularization; Semisupervised learning (SSL); Target detection

Indexed keywords

GRAPHIC METHODS; IMAGE ENHANCEMENT; PATTERN MATCHING; RADAR TARGET RECOGNITION; SPECTROSCOPY;

EID: 70350676140     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2009.2020910     Document Type: Article
Times cited : (64)

References (36)
  • 1
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • N. M. Dempster A. P. Laird D. B. Rubin Maximum likelihood from incomplete data via the EM algorithm J. R. Stat. Soc., Ser. B 39 1 1 38 Jan. 1977
    • (1977) J. R. Stat. Soc., Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, N.M.1    Laird, A.P.2    Rubin, D.B.3
  • 2
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • B. M. Shahshahani D. A. Landgrebe The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon IEEE Trans. Geosci. Remote Sens. 32 5 1087 1095 Sep. 1994
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 3
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • Q. Jackson D. A. Landgrebe An adaptive classifier design for high-dimensional data analysis with a limited training data set IEEE Trans. Geosci. Remote Sens. 39 12 2664 2679 Dec. 2001
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.12 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.A.2
  • 4
    • 0003450542 scopus 로고    scopus 로고
    • Statistical Learning Theory
    • Wiley New York
    • V. N. Vapnik Statistical Learning Theory 1998 Wiley New York
    • (1998)
    • Vapnik, V.N.1
  • 5
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for the semisupervised classification of remote-sensing images
    • L. Bruzzone M. Chi M. Marconcini A novel transductive SVM for the semisupervised classification of remote-sensing images IEEE Trans. Geosci. Remote Sens. 44 11 3363 3373 Nov. 2006
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 6
    • 0003882879 scopus 로고    scopus 로고
    • Spectral Graph Theory
    • 1st Amer. Math. Soc. RI, Providence
    • F. Chung Spectral Graph Theory 1st Number 92 in CBMS Regional Conference Series in Mathematics Feb. 1997 Amer. Math. Soc. RI, Providence
    • (1997)
    • Chung, F.1
  • 7
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • G. Camps-Valls T. Bandos D. Zhou Semi-supervised graph-based hyperspectral image classification IEEE Trans. Geosci. Remote Sens. 45 10 3044 3054 Oct. 2007
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos, T.2    Zhou, D.3
  • 8
    • 0030502142 scopus 로고    scopus 로고
    • Deflation techniques for an implicitly re-started Arnoldi iteration
    • R. B. Lehoucq D. C. Sorensen Deflation techniques for an implicitly re-started Arnoldi iteration SIAM J. Matrix Anal. Appl. 17 2 789 821 Feb. 1996
    • (1996) SIAM J. Matrix Anal. Appl. , vol.17 , Issue.2 , pp. 789-821
    • Lehoucq, R.B.1    Sorensen, D.C.2
  • 9
    • 0000350486 scopus 로고    scopus 로고
    • Advances in Neural Information Processing Systems, NIPS2001
    • Using the NystrÖm method to speed up kernel machines MIT Press MA, Cambridge
    • C. K. I. Williams M. Seeger Advances in Neural Information Processing Systems, NIPS2001 13 682 688 Dec. 2001 MIT Press MA, Cambridge Using the NystrÖm method to speed up kernel machines
    • (2001) , vol.13 , pp. 682-688
    • Williams, C.K.I.1    Seeger, M.2
  • 10
    • 85045788563 scopus 로고    scopus 로고
    • Advances in Neural Information Processing Systems 20
    • Statistical analysis of semi-supervised regression MIT Press MA, Cambridge
    • J. Lafferty L. Wasserman Advances in Neural Information Processing Systems 20 801 808 2008 MIT Press MA, Cambridge Statistical analysis of semi-supervised regression
    • (2008) , pp. 801-808
    • Lafferty, J.1    Wasserman, L.2
  • 11
    • 0031540855 scopus 로고    scopus 로고
    • On the convergence of pattern search algorithms
    • V. Torczon On the convergence of pattern search algorithms SIAM J. Optim. 7 1 1 25 1997
    • (1997) SIAM J. Optim. , vol.7 , Issue.1 , pp. 1-25
    • Torczon, V.1
  • 12
    • 85177013600 scopus 로고    scopus 로고
    • Target detection with a contextual kernel orthogonal subspace projection
    • L. Capobianco G. Camps-Valls A. Garzelli Target detection with a contextual kernel orthogonal subspace projection SPIE Int. Symp. Remote Sens. XIV SPIE Int. Symp. Remote Sens. XIV Cardiff U.K. 2008-Sep.
    • (2008)
    • Capobianco, L.1    Camps-Valls, G.2    Garzelli, A.3
  • 13
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • R. Hadsell S. Chopra Y. LeCun Dimensionality reduction by learning an invariant mapping Proc. CVPR 2 1735 1742 Proc. CVPR 2006
    • (2006) , vol.2 , pp. 1735-1742
    • Hadsell, R.1    Chopra, S.2    LeCun, Y.3
  • 14
    • 0029195475 scopus 로고
    • On the exponential value of labeled samples
    • V. Castelli T. M. Cover On the exponential value of labeled samples Pattern Recognit. Lett. 16 1 105 111 Jan. 1995
    • (1995) Pattern Recognit. Lett. , vol.16 , Issue.1 , pp. 105-111
    • Castelli, V.1    Cover, T.M.2
  • 15
    • 0001662441 scopus 로고    scopus 로고
    • The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter
    • V. Castelli T. Cover The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter IEEE Trans. Inf. Theory 42 6 2102 2117 Nov. 1996
    • (1996) IEEE Trans. Inf. Theory , vol.42 , Issue.6 , pp. 2102-2117
    • Castelli, V.1    Cover, T.2
  • 16
    • 85176997056 scopus 로고    scopus 로고
    • NIPS 2007
    • The value of labeled and unlabeled examples when the model is imperfect MIT Press MA, Cambridge
    • K. Sinha M. Belkin NIPS 2007 20 2008 MIT Press MA, Cambridge The value of labeled and unlabeled examples when the model is imperfect
    • (2008) , vol.20
    • Sinha, K.1    Belkin, M.2
  • 17
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • S. Sathiya Keerthi C.-J. Lin Asymptotic behaviors of support vector machines with Gaussian kernel Neural Comput. 15 7 1667 1689 Jul. 2003
    • (2003) Neural Comput. , vol.15 , Issue.7 , pp. 1667-1689
    • Sathiya Keerthi, S.1    Lin, C.-J.2
  • 18
    • 29044445372 scopus 로고    scopus 로고
    • Kernel orthogonal subspace projection for hyperspectral signal classification
    • H. Kwon N. M. Nasrabadi Kernel orthogonal subspace projection for hyperspectral signal classification IEEE Trans. Geosci. Remote Sens. 43 12 2952 2962 Dec. 2005
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.12 , pp. 2952-2962
    • Kwon, H.1    Nasrabadi, N.M.2
  • 19
    • 39049088613 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • J. Mercer Functions of positive and negative type and their connection with the theory of integral equations Philos. Trans. R. Soc. London A, Math. Phys. Sci. CCIX A456 215 228 May 1905
    • (1905) Philos. Trans. R. Soc. London A, Math. Phys. Sci. , vol.CCIX , Issue.A456 , pp. 215-228
    • Mercer, J.1
  • 20
    • 59649108206 scopus 로고    scopus 로고
    • Beyond the point cloud: From transductive to semi-supervised learning
    • V. Sindhwani P. Niyogi M. Belkin Beyond the point cloud: From transductive to semi-supervised learning ICML 119 824 831 ICML New York 2005
    • (2005) , vol.119 , pp. 824-831
    • Sindhwani, V.1    Niyogi, P.2    Belkin, M.3
  • 21
    • 85177005055 scopus 로고    scopus 로고
    • Image classification with semi-supervised support vector domain description
    • J. MuÑoz-MarÍ G. Camps-Valls L. GÓmez-Chova J. Calpe-Maravilla Image classification with semi-supervised support vector domain description SPIE Int. Symp. Remote Sens. XIV SPIE Int. Symp. Remote Sens. XIV Cardiff U.K. 2008-Sep.
    • (2008)
    • MuÑoz-MarÍ, J.1    Camps-Valls, G.2    GÓmez-Chova, L.3    Calpe-Maravilla, J.4
  • 22
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • I. S. Reed X. Yu Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution IEEE Trans. Acoust., Speech, Signal 38 10 1760 1770 Oct. 1990
    • (1990) IEEE Trans. Acoust., Speech, Signal , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 23
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • J. C. Harsanyi C. I. Chang Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach IEEE Trans. Geosci. Remote Sens. 32 4 779 785 Jul. 1994
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.I.2
  • 25
    • 33746641760 scopus 로고    scopus 로고
    • Hyperspectral anomaly detection within the signal subspace
    • K. I. Ranney M. Soumekh Hyperspectral anomaly detection within the signal subspace IEEE Geosci. Remote Sens. Lett. 3 3 312 316 Jul. 2006
    • (2006) IEEE Geosci. Remote Sens. Lett. , vol.3 , Issue.3 , pp. 312-316
    • Ranney, K.I.1    Soumekh, M.2
  • 27
    • 39049167499 scopus 로고    scopus 로고
    • Improved manifold coordinate representations of large-scale hyperspectral scenes
    • C. M. Bachmann T. L. Ainsworth R. A. Fusina Improved manifold coordinate representations of large-scale hyperspectral scenes IEEE Trans. Geosci. Remote Sens. 44 10 2786 2803 Oct. 2006
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2786-2803
    • Bachmann, C.M.1    Ainsworth, T.L.2    Fusina, R.A.3
  • 28
    • 0004094721 scopus 로고    scopus 로고
    • Learning With Kernels—Support Vector Machines, Regularization, Optimization and Beyond
    • MIT Press MA, Cambridge
    • B. SchÖlkopf A. Smola Learning With Kernels—Support Vector Machines, Regularization, Optimization and Beyond 2002 MIT Press MA, Cambridge
    • (2002)
    • SchÖlkopf, B.1    Smola, A.2
  • 29
    • 33750043620 scopus 로고    scopus 로고
    • Kernel Methods in Bioengineering, Signal and Image Processing
    • Idea Group PA, Hershey
    • Kernel Methods in Bioengineering, Signal and Image Processing Jan. 2007 Idea Group PA, Hershey
    • (2007)
  • 30
    • 14644392676 scopus 로고    scopus 로고
    • Kernel Methods for Pattern Analysis
    • Cambridge Univ. Press U.K., Cambridge
    • J. Shawe-Taylor N. Cristianini Kernel Methods for Pattern Analysis 2004 Cambridge Univ. Press U.K., Cambridge
    • (2004)
    • Shawe-Taylor, J.1    Cristianini, N.2
  • 31
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • G. Camps-Valls L. Bruzzone Kernel-based methods for hyperspectral image classification IEEE Trans. Geosci. Remote Sens. 43 6 1351 1362 Jun. 2005
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 32
    • 57649130664 scopus 로고    scopus 로고
    • Kernel matched signal detectors for hyperspectral target detection
    • H. Kwon N. M. Nasrabadi Kernel matched signal detectors for hyperspectral target detection Proc. IEEE Comput. Soc. Conf. CVPR— Workshops 6 Proc. IEEE Comput. Soc. Conf. CVPR— Workshops 2005
    • (2005) , pp. 6
    • Kwon, H.1    Nasrabadi, N.M.2
  • 33
    • 33749252873 scopus 로고    scopus 로고
    • Semi-Supervised Learning
    • 1st MIT Press MA, Cambridge
    • O. Chapelle B. SchÖlkopf A. Zien Semi-Supervised Learning 1st 2006 MIT Press MA, Cambridge
    • (2006)
    • Chapelle, O.1    SchÖlkopf, B.2    Zien, A.3
  • 34
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • WI, Madison
    • X. Zhu Semi-supervised learning literature survey 2005 WI, Madison Tech. Rep. 1530 Comput. Sci., Univ. Wisconsin-Madison http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
    • (2005)
    • Zhu, X.1
  • 35
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • A. Aizerman E. M. Braverman L. I. Rozoner Theoretical foundations of the potential function method in pattern recognition learning Autom. Remote Control 25 821 837 1964
    • (1964) Autom. Remote Control , vol.25 , pp. 821-837
    • Aizerman, A.1    Braverman, E.M.2    Rozoner, L.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.