-
2
-
-
0030560429
-
The law of the Euler scheme for stochastic differential equations, I: Convergence rate of the distribution function
-
Bally, V., Talay, D.: The law of the Euler scheme for stochastic differential equations, I: convergence rate of the distribution function. Probab. Theory Relat. Fields 104, 43-60 (1996).
-
(1996)
Probab. Theory Relat. Fields
, vol.104
, pp. 43-60
-
-
Bally, V.1
Talay, D.2
-
5
-
-
0042726950
-
Estimation of densities and applications
-
Caballero, M.E., Fernández, B., Nualart, D.: Estimation of densities and applications. J. Theor. Probab. 11, 831-851 (1998).
-
(1998)
J. Theor. Probab.
, vol.11
, pp. 831-851
-
-
Caballero, M.E.1
Fernández, B.2
Nualart, D.3
-
8
-
-
84892272601
-
Improved multilevel Monte Carlo convergence using the Milstein scheme
-
A. Keller, S. Heinrich, and H. Niederreiter (Eds.), Berlin: Springer
-
Giles, M.B.: Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 343-358. Springer, Berlin (2008).
-
(2008)
Monte Carlo and Quasi-Monte Carlo Methods 2006
, pp. 343-358
-
-
Giles, M.B.1
-
9
-
-
61449162945
-
Multilevel Monte Carlo path simulation
-
Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56, 607-617 (2008).
-
(2008)
Oper. Res.
, vol.56
, pp. 607-617
-
-
Giles, M.B.1
-
10
-
-
70350634128
-
Analyzing multi-level Monte Carlo for options with non-globally Lipschitz payoff
-
Giles, M.B., Higham, D.J., Mao, X.: Analyzing multi-level Monte Carlo for options with non-globally Lipschitz payoff. Finance Stoch. 13, 403-414 (2009).
-
(2009)
Finance Stoch.
, vol.13
, pp. 403-414
-
-
Giles, M.B.1
Higham, D.J.2
Mao, X.3
-
11
-
-
33748641394
-
Euler scheme and tempered distributions
-
Guyon, J.: Euler scheme and tempered distributions. Stoch. Process. Appl. 116, 877-904 (2006).
-
(2006)
Stoch. Process. Appl.
, vol.116
, pp. 877-904
-
-
Guyon, J.1
-
12
-
-
0043228001
-
A note on Euler's approximations
-
Gyöngy, I.: A note on Euler's approximations. Potential Anal. 8, 205-216 (1998).
-
(1998)
Potential Anal.
, vol.8
, pp. 205-216
-
-
Gyöngy, I.1
-
13
-
-
0040361064
-
Existence of strong solutions for Itô's stochastic equations via approximations
-
Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô's stochastic equations via approximations. Probab. Theory Relat. Fields 105, 143-158 (1996).
-
(1996)
Probab. Theory Relat. Fields
, vol.105
, pp. 143-158
-
-
Gyöngy, I.1
Krylov, N.2
-
14
-
-
84944906179
-
Multilevel Monte Carlo methods
-
Lecture Notes in Computer Science, S. Margenov (Ed.), Berlin: Springer
-
Heinrich, S.: Multilevel Monte Carlo methods. In: Margenov, S., et al. (eds.) Large-Scale Scientific Computing, Third International Conference. Lecture Notes in Computer Science, vol. 2179, pp. 58-67. Springer, Berlin (2001).
-
(2001)
Large-Scale Scientific Computing, Third International Conference
, vol.2179
, pp. 58-67
-
-
Heinrich, S.1
-
15
-
-
0012279718
-
Strong convergence of Euler-type methods for nonlinear stochastic differential equations
-
Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40, 1041-1063 (2002).
-
(2002)
SIAM J. Numer. Anal.
, vol.40
, pp. 1041-1063
-
-
Higham, D.J.1
Mao, X.2
Stuart, A.M.3
-
16
-
-
4444266562
-
On the global error of Itô-Taylor schemes for strong approximation of scalar stochastic differential equations
-
Hofmann, N., Müller-Gronbach, T.: On the global error of Itô-Taylor schemes for strong approximation of scalar stochastic differential equations. J. Complex. 20, 732-752 (2004).
-
(2004)
J. Complex
, vol.20
, pp. 732-752
-
-
Hofmann, N.1
Müller-Gronbach, T.2
-
17
-
-
0035294723
-
The optimal discretization of stochastic differential equations
-
Hofmann, N., Müller-Gronbach, T., Ritter, K.: The optimal discretization of stochastic differential equations. J. Complex. 17, 117-153 (2001).
-
(2001)
J. Complex
, vol.17
, pp. 117-153
-
-
Hofmann, N.1
Müller-Gronbach, T.2
Ritter, K.3
-
18
-
-
0036294979
-
Linear vs. standard information for scalar stochastic differential equations
-
Hofmann, N., Müller-Gronbach, T., Ritter, K.: Linear vs. standard information for scalar stochastic differential equations. J. Complex. 18, 394-414 (2002).
-
(2002)
J. Complex
, vol.18
, pp. 394-414
-
-
Hofmann, N.1
Müller-Gronbach, T.2
Ritter, K.3
-
19
-
-
22044434402
-
Asymptotic error distributions for the Euler method for stochastic differential equations
-
Jacod, J., Protter, P.: Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab. 26, 267-307 (1998).
-
(1998)
Ann. Probab.
, vol.26
, pp. 267-307
-
-
Jacod, J.1
Protter, P.2
-
21
-
-
30844448318
-
Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing
-
Kebaier, A.: Statistical Romberg extrapolation: a new variance reduction method and applications to option pricing. Ann. Appl. Probab. 15, 2681-2705 (2005).
-
(2005)
Ann. Appl. Probab.
, vol.15
, pp. 2681-2705
-
-
Kebaier, A.1
-
23
-
-
0041969994
-
The optimal uniform approximation of systems of stochastic differential equations
-
Müller-Gronbach, T.: The optimal uniform approximation of systems of stochastic differential equations. Ann. Appl. Probab. 12, 664-690 (2002).
-
(2002)
Ann. Appl. Probab.
, vol.12
, pp. 664-690
-
-
Müller-Gronbach, T.1
-
25
-
-
26844485169
-
Optimal pointwise approximation of SDEs based on Brownian motion at discrete points
-
Müller-Gronbach, T.: Optimal pointwise approximation of SDEs based on Brownian motion at discrete points. Ann. Appl. Probab. 14, 1605-1642 (2004).
-
(2004)
Ann. Appl. Probab.
, vol.14
, pp. 1605-1642
-
-
Müller-Gronbach, T.1
-
27
-
-
0000124397
-
Expansion of the global error for numerical schemes solving stochastic differential equations
-
Talay, D., Tubaro, L.: Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8, 483-509 (1990).
-
(1990)
Stoch. Anal. Appl.
, vol.8
, pp. 483-509
-
-
Talay, D.1
Tubaro, L.2
|