메뉴 건너뛰기




Volumn 40, Issue 3, 2002, Pages 1041-1063

Strong convergence of Euler-type methods for nonlinear stochastic differential equations

Author keywords

Backward Euler; Euler Maruyama; Finite time convergence; Implicit; Moment bounds; Nonlinearity; One sided Lipschitz condition; Split step

Indexed keywords

BOUNDARY CONDITIONS; CONVERGENCE OF NUMERICAL METHODS; FINITE DIFFERENCE METHOD; NONLINEAR SYSTEMS; RANDOM PROCESSES;

EID: 0012279718     PISSN: 00361429     EISSN: None     Source Type: Journal    
DOI: 10.1137/S0036142901389530     Document Type: Article
Times cited : (622)

References (17)
  • 1
    • 0002351173 scopus 로고
    • Stability criteria for implicit Runge-Kutta methods
    • K. BURRAGE AND J. C. BUTCHER, Stability criteria for implicit Runge-Kutta methods, SIAM J. Numer. Anal., 16 (1979), pp. 46-57.
    • (1979) SIAM J. Numer. Anal. , vol.16 , pp. 46-57
    • Burrage, K.1    Butcher, J.C.2
  • 2
    • 0004867067 scopus 로고    scopus 로고
    • A note on the stability properties of the Euler methods for solving stochastic differential equations
    • K. BURRAGE AND T. TIAN, A note on the stability properties of the Euler methods for solving stochastic differential equations, New Zealand J. Math., 29 (2000), pp. 115-127.
    • (2000) New Zealand J. Math. , vol.29 , pp. 115-127
    • Burrage, K.1    Tian, T.2
  • 3
    • 0016647175 scopus 로고
    • A stability property of implicit Runge-Kutta methods
    • J. C. BUTCHER, A stability property of implicit Runge-Kutta methods, BIT, 15 (1975), pp. 358-361.
    • (1975) BIT , vol.15 , pp. 358-361
    • Butcher, J.C.1
  • 4
    • 0002945485 scopus 로고
    • Error analysis for a class of methods for stiff non-linear initial value problems
    • G. A. Watson, ed., Springer-Verlag, Berlin
    • G. DAHLQUIST, Error analysis for a class of methods for stiff non-linear initial value problems, in Numerical Analysis, Lecture Notes in Math. 506, G. A. Watson, ed., Springer-Verlag, Berlin, 1976, pp. 60-72.
    • (1976) Numerical Analysis, Lecture Notes in Math. , vol.506 , pp. 60-72
    • Dahlquist, G.1
  • 6
    • 0038200256 scopus 로고    scopus 로고
    • Convergence of numerical schemes for stochastic differential equations
    • G. FLEURY AND P. BERNARD, Convergence of numerical schemes for stochastic differential equations, Monte Carlo Methods Appl., 7 (2001), pp. 35-44.
    • (2001) Monte Carlo Methods Appl. , vol.7 , pp. 35-44
    • Fleury, G.1    Bernard, P.2
  • 7
    • 0043228001 scopus 로고    scopus 로고
    • A note on Euler's approximations
    • I. GYÖNGY, A note on Euler's approximations, Potential Anal., 8 (1998), pp. 205-216.
    • (1998) Potential Anal. , vol.8 , pp. 205-216
    • Gyöngy, I.1
  • 8
    • 0040361064 scopus 로고    scopus 로고
    • Existence of strong solutions for Itô's stochastic equations via approximations
    • I. GYÖNGY AND N. KRYLOV, Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), pp. 143-158.
    • (1996) Probab. Theory Related Fields , vol.105 , pp. 143-158
    • Gyöngy, I.1    Krylov, N.2
  • 10
    • 0034436594 scopus 로고    scopus 로고
    • Mean-square and asymptotic stability of the stochastic theta method
    • D. J. HIGHAM, Mean-square and asymptotic stability of the stochastic theta method, SIAM J. Numer. Anal., 38 (2000), pp. 753-769.
    • (2000) SIAM J. Numer. Anal. , vol.38 , pp. 753-769
    • Higham, D.J.1
  • 11
    • 0038538861 scopus 로고    scopus 로고
    • Semi-implicit Euler-Maruyama scheme for stiff stochastic equations
    • H. Koerezlioglu, ed., Birkhauser, Boston
    • Y. Hu, Semi-implicit Euler-Maruyama scheme for stiff stochastic equations, in Stochastic Analysis and Related Topics V: The Silvri Workshop, Progr. Probab. 38, H. Koerezlioglu, ed., Birkhauser, Boston, 1996, pp. 183-202.
    • (1996) Stochastic Analysis and Related Topics V: The Silvri Workshop, Progr. Probab. , vol.38 , pp. 183-202
    • Hu, Y.1
  • 13
    • 0003260327 scopus 로고
    • Stability of stochastic differential equations with respect to semimartingales
    • Longman Scientific and Technical, Harlow, UK
    • X. MAO, Stability of Stochastic Differential Equations with Respect to Semimartingales, Pitman Res. Notes Math. Ser. 251, Longman Scientific and Technical, Harlow, UK, 1991.
    • (1991) Pitman Res. Notes Math. Ser. , vol.251
    • Mao, X.1
  • 15
    • 0013027223 scopus 로고    scopus 로고
    • Ergodicity for SDEs and approximations: Locally lipschitz vector fields and degenerate noise
    • University of Strathclyde, Department of Mathematics, Glasgow, UK
    • J. MATTINGLY, A. M. STUART, AND D. J. HIGHAM, Ergodicity for SDEs and Approximations: Locally Lipschitz Vector Fields and Degenerate Noise, Tech. Rep. 7, University of Strathclyde, Department of Mathematics, Glasgow, UK, 2001.
    • (2001) Tech. Rep. , vol.7
    • Mattingly, J.1    Stuart, A.M.2    Higham, D.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.