-
2
-
-
0007470214
-
Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design
-
Cambanis S., Hu Y. Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design. Stochastics Stochastics Rep. 59:1996;211-240.
-
(1996)
Stochastics Stochastics Rep.
, vol.59
, pp. 211-240
-
-
Cambanis, S.1
Hu, Y.2
-
3
-
-
0007508207
-
The maximum rate of convergence of discrete approximations
-
B. Grigelionis. Stochastic Differential Systems. Berlin: Springer-Verlag
-
Clark J. M. C., Cameron R. J. The maximum rate of convergence of discrete approximations. Grigelionis B. Stochastic Differential Systems. Lecture Notes Control Inf. Sci. 25:1980;162-171 Springer-Verlag, Berlin.
-
(1980)
Lecture Notes Control Inf. Sci.
, vol.25
, pp. 162-171
-
-
Clark, J.M.C.1
Cameron, R.J.2
-
5
-
-
0031258411
-
Variable step size control in the numerical solution of stochastic differential equations
-
Gaines J. G., Lyons T. J. Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57:1997;1455-1484.
-
(1997)
SIAM J. Appl. Math.
, vol.57
, pp. 1455-1484
-
-
Gaines, J.G.1
Lyons, T.J.2
-
6
-
-
85050901585
-
Nonlinear Lebesgue and Ito integration problems of high complexity
-
in press
-
P. Hertling, Nonlinear Lebesgue and Ito integration problems of high complexity, J. Complexity, in press.
-
J. Complexity
-
-
Hertling, P.1
-
7
-
-
0040364383
-
Optimal approximation of stochastic differential equations by adaptive step-size control
-
Hofmann N., Müller-Gronbach T., Ritter K. Optimal approximation of stochastic differential equations by adaptive step-size control. Math. Comp. 69:2000;1017-1034.
-
(2000)
Math. Comp.
, vol.69
, pp. 1017-1034
-
-
Hofmann, N.1
Müller-Gronbach, T.2
Ritter, K.3
-
8
-
-
0039003955
-
Step-size control for the uniform approximation of systems of stochastic differential equations with additive noise
-
N. Hofmann, T. Müller-Gronbach, and K. Ritter, Step-size control for the uniform approximation of systems of stochastic differential equations with additive noise, Ann. Appl. Probab.10, 616-633.
-
Ann. Appl. Probab.
, vol.10
, pp. 616-633
-
-
Hofmann, N.1
Müller-Gronbach, T.2
Ritter, K.3
-
11
-
-
0032202905
-
Step size control in the numerical solution of stochastic differential equations
-
Mauthner S. Step size control in the numerical solution of stochastic differential equations. J. Comput. Appl. Math. 100:1998;93-109.
-
(1998)
J. Comput. Appl. Math.
, vol.100
, pp. 93-109
-
-
Mauthner, S.1
-
13
-
-
0000126590
-
An efficient approximation for stochastic differential equations on the partition of symmetrical first passage times
-
Newton N. J. An efficient approximation for stochastic differential equations on the partition of symmetrical first passage times. Stochastics Stochastics Rep. 29:1990;227-258.
-
(1990)
Stochastics Stochastics Rep.
, vol.29
, pp. 227-258
-
-
Newton, N.J.1
-
14
-
-
0003237499
-
Average-Case Analysis of Numerical Problems
-
Berlin: Springer-Verlag
-
Ritter K. Average-Case Analysis of Numerical Problems. Lecture Notes in Mathematics. 1733:2000;Springer-Verlag, Berlin.
-
(2000)
Lecture Notes in Mathematics
, vol.1733
-
-
Ritter, K.1
-
15
-
-
38249002021
-
Sampling designs for estimation of a random process
-
Su Y., Cambanis S. Sampling designs for estimation of a random process. Stochastic Processes Appl. 46:1993;47-89.
-
(1993)
Stochastic Processes Appl.
, vol.46
, pp. 47-89
-
-
Su, Y.1
Cambanis, S.2
-
16
-
-
0003208202
-
Simulation of stochastic differential systems
-
P. Krée, & W. Wedig. Lecture Notes in Physics Berlin: Springer-Verlag
-
Talay D. Simulation of stochastic differential systems. Krée P., Wedig W. Probabilistic Methods in Applied Physics. Lecture Notes in Physics. 451:1995;54-96 Springer-Verlag, Berlin.
-
(1995)
Probabilistic Methods in Applied Physics
, vol.451
, pp. 54-96
-
-
Talay, D.1
|