메뉴 건너뛰기




Volumn 17, Issue 1, 2001, Pages 117-153

The optimal discretization of stochastic differential equations

Author keywords

Adaptive discretization; Asymptotic optimality; Complexity; Lower bounds; Pathwise approximation; Stochastic differential equation

Indexed keywords


EID: 0035294723     PISSN: 0885064X     EISSN: None     Source Type: Journal    
DOI: 10.1006/jcom.2000.0570     Document Type: Article
Times cited : (75)

References (18)
  • 2
    • 0007470214 scopus 로고    scopus 로고
    • Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design
    • Cambanis S., Hu Y. Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design. Stochastics Stochastics Rep. 59:1996;211-240.
    • (1996) Stochastics Stochastics Rep. , vol.59 , pp. 211-240
    • Cambanis, S.1    Hu, Y.2
  • 3
    • 0007508207 scopus 로고
    • The maximum rate of convergence of discrete approximations
    • B. Grigelionis. Stochastic Differential Systems. Berlin: Springer-Verlag
    • Clark J. M. C., Cameron R. J. The maximum rate of convergence of discrete approximations. Grigelionis B. Stochastic Differential Systems. Lecture Notes Control Inf. Sci. 25:1980;162-171 Springer-Verlag, Berlin.
    • (1980) Lecture Notes Control Inf. Sci. , vol.25 , pp. 162-171
    • Clark, J.M.C.1    Cameron, R.J.2
  • 5
    • 0031258411 scopus 로고    scopus 로고
    • Variable step size control in the numerical solution of stochastic differential equations
    • Gaines J. G., Lyons T. J. Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57:1997;1455-1484.
    • (1997) SIAM J. Appl. Math. , vol.57 , pp. 1455-1484
    • Gaines, J.G.1    Lyons, T.J.2
  • 6
    • 85050901585 scopus 로고    scopus 로고
    • Nonlinear Lebesgue and Ito integration problems of high complexity
    • in press
    • P. Hertling, Nonlinear Lebesgue and Ito integration problems of high complexity, J. Complexity, in press.
    • J. Complexity
    • Hertling, P.1
  • 7
    • 0040364383 scopus 로고    scopus 로고
    • Optimal approximation of stochastic differential equations by adaptive step-size control
    • Hofmann N., Müller-Gronbach T., Ritter K. Optimal approximation of stochastic differential equations by adaptive step-size control. Math. Comp. 69:2000;1017-1034.
    • (2000) Math. Comp. , vol.69 , pp. 1017-1034
    • Hofmann, N.1    Müller-Gronbach, T.2    Ritter, K.3
  • 8
    • 0039003955 scopus 로고    scopus 로고
    • Step-size control for the uniform approximation of systems of stochastic differential equations with additive noise
    • N. Hofmann, T. Müller-Gronbach, and K. Ritter, Step-size control for the uniform approximation of systems of stochastic differential equations with additive noise, Ann. Appl. Probab.10, 616-633.
    • Ann. Appl. Probab. , vol.10 , pp. 616-633
    • Hofmann, N.1    Müller-Gronbach, T.2    Ritter, K.3
  • 11
    • 0032202905 scopus 로고    scopus 로고
    • Step size control in the numerical solution of stochastic differential equations
    • Mauthner S. Step size control in the numerical solution of stochastic differential equations. J. Comput. Appl. Math. 100:1998;93-109.
    • (1998) J. Comput. Appl. Math. , vol.100 , pp. 93-109
    • Mauthner, S.1
  • 13
    • 0000126590 scopus 로고
    • An efficient approximation for stochastic differential equations on the partition of symmetrical first passage times
    • Newton N. J. An efficient approximation for stochastic differential equations on the partition of symmetrical first passage times. Stochastics Stochastics Rep. 29:1990;227-258.
    • (1990) Stochastics Stochastics Rep. , vol.29 , pp. 227-258
    • Newton, N.J.1
  • 14
    • 0003237499 scopus 로고    scopus 로고
    • Average-Case Analysis of Numerical Problems
    • Berlin: Springer-Verlag
    • Ritter K. Average-Case Analysis of Numerical Problems. Lecture Notes in Mathematics. 1733:2000;Springer-Verlag, Berlin.
    • (2000) Lecture Notes in Mathematics , vol.1733
    • Ritter, K.1
  • 15
    • 38249002021 scopus 로고
    • Sampling designs for estimation of a random process
    • Su Y., Cambanis S. Sampling designs for estimation of a random process. Stochastic Processes Appl. 46:1993;47-89.
    • (1993) Stochastic Processes Appl. , vol.46 , pp. 47-89
    • Su, Y.1    Cambanis, S.2
  • 16
    • 0003208202 scopus 로고
    • Simulation of stochastic differential systems
    • P. Krée, & W. Wedig. Lecture Notes in Physics Berlin: Springer-Verlag
    • Talay D. Simulation of stochastic differential systems. Krée P., Wedig W. Probabilistic Methods in Applied Physics. Lecture Notes in Physics. 451:1995;54-96 Springer-Verlag, Berlin.
    • (1995) Probabilistic Methods in Applied Physics , vol.451 , pp. 54-96
    • Talay, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.