메뉴 건너뛰기




Volumn 31, Issue 4, 2009, Pages 375-404

Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients

Author keywords

Global Lipschitz; Higher order approximation; Parabolic stochastic partial differential equation; Pathwise approximation; Strong error criteria

Indexed keywords


EID: 70350393847     PISSN: 09262601     EISSN: 1572929X     Source Type: Journal    
DOI: 10.1007/s11118-009-9139-3     Document Type: Article
Times cited : (62)

References (31)
  • 2
    • 0003027298 scopus 로고    scopus 로고
    • Time-discretised Galerkin approximation of parabolic stochastic PDEs
    • Grecksch, W., Kloeden, P.E.: Time-discretised Galerkin approximation of parabolic stochastic PDEs. Bull. Aust. Math. Soc. 54(1), 79-85 (1996).
    • (1996) Bull. Aust. Math. Soc. , vol.54 , Issue.1 , pp. 79-85
    • Grecksch, W.1    Kloeden, P.E.2
  • 3
    • 4244153522 scopus 로고
    • Implicit scheme for quasi-linear parabolic partial differential equations perturbed by space-time white noise
    • Gyöngy, I., Nualart, D.: Implicit scheme for quasi-linear parabolic partial differential equations perturbed by space-time white noise. Stoch. Process. their Appl. 58(1), 57-72 (1995).
    • (1995) Stoch. Process. their Appl. , vol.58 , Issue.1 , pp. 57-72
    • Gyöngy, I.1    Nualart, D.2
  • 4
    • 0042732714 scopus 로고    scopus 로고
    • Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise
    • Gyöngy, I., Nualart, D.: Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise. Potential Anal. 7(4), 725-757 (1997).
    • (1997) Potential Anal. , vol.7 , Issue.4 , pp. 725-757
    • Gyöngy, I.1    Nualart, D.2
  • 5
    • 0043228001 scopus 로고    scopus 로고
    • A note on Euler's approximations
    • Gyöngy, I.: A note on Euler's approximations. Potential Anal. 8(3), 205-216 (1998).
    • (1998) Potential Anal. , vol.8 , Issue.3 , pp. 205-216
    • Gyöngy, I.1
  • 6
    • 0042078403 scopus 로고    scopus 로고
    • Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II
    • Gyöngy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II. Potential Anal. 11(1), 1-37 (1999).
    • (1999) Potential Anal. , vol.11 , Issue.1 , pp. 1-37
    • Gyöngy, I.1
  • 7
    • 18144433566 scopus 로고    scopus 로고
    • On the splitting-up method and stochastic partial differential equations
    • Gyöngy, I., Krylov, N.: On the splitting-up method and stochastic partial differential equations. Ann. Probab. 31(2), 564-591 (2003).
    • (2003) Ann. Probab. , vol.31 , Issue.2 , pp. 564-591
    • Gyöngy, I.1    Krylov, N.2
  • 8
    • 17144406851 scopus 로고    scopus 로고
    • On discretization schemes for stochastic evolution equations
    • Gyöngy, I., Millet, A.: On discretization schemes for stochastic evolution equations. Potential Anal. 23(2), 99-134 (2005).
    • (2005) Potential Anal. , vol.23 , Issue.2 , pp. 99-134
    • Gyöngy, I.1    Millet, A.2
  • 9
    • 57649156217 scopus 로고    scopus 로고
    • Rate of convergence of space time approximations for stochastic evolution equations
    • Gyöngy, I., Millet, A.: Rate of convergence of space time approximations for stochastic evolution equations. Potential Anal. 30(1), 29-64 (2009).
    • (2009) Potential Anal. , vol.30 , Issue.1 , pp. 29-64
    • Gyöngy, I.1    Millet, A.2
  • 10
    • 0037107474 scopus 로고    scopus 로고
    • Numerical analysis of semilinear stochastic evolution equations in Banach spaces
    • Hausenblas, E.: Numerical analysis of semilinear stochastic evolution equations in Banach spaces. J. Comput. Appl. Math. 147(2), 485-516 (2002).
    • (2002) J. Comput. Appl. Math. , vol.147 , Issue.2 , pp. 485-516
    • Hausenblas, E.1
  • 11
    • 0037209607 scopus 로고    scopus 로고
    • Approximation for semilinear stochastic evolution equations
    • Hausenblas, E.: Approximation for semilinear stochastic evolution equations. Potential Anal. 18(2), 141-186 (2003).
    • (2003) Potential Anal. , vol.18 , Issue.2 , pp. 141-186
    • Hausenblas, E.1
  • 13
    • 84894226734 scopus 로고    scopus 로고
    • Pathwise approximation of stochastic differential equations on domains: Higher order convergence rates without global Lipschitz coefficients
    • Jentzen, A., Kloeden, P.E., Neuenkirch, A.: Pathwise approximation of stochastic differential equations on domains: Higher order convergence rates without global Lipschitz coefficients. Numer. Math. 112(1), 41-64 (2009).
    • (2009) Numer. Math. , vol.112 , Issue.1 , pp. 41-64
    • Jentzen, A.1    Kloeden, P.E.2    Neuenkirch, A.3
  • 14
    • 56449114442 scopus 로고    scopus 로고
    • A random Euler scheme for Carathéodory differential equations
    • Jentzen, A., Neuenkirch, A.: A random Euler scheme for Carathéodory differential equations. J. Comput. Appl. Math. 224(1), 346-359 (2009).
    • (2009) J. Comput. Appl. Math. , vol.224 , Issue.1 , pp. 346-359
    • Jentzen, A.1    Neuenkirch, A.2
  • 15
    • 58149125901 scopus 로고    scopus 로고
    • Overcoming the order barrier in the numerical approximation of SPDEs with additive space-time noise
    • Jentzen, A., Kloeden, P.E.: Overcoming the order barrier in the numerical approximation of SPDEs with additive space-time noise. Proc. R. Soc. A 465(2102), 649-667 (2009).
    • (2009) Proc. R. Soc. A , vol.465 , Issue.2102 , pp. 649-667
    • Jentzen, A.1    Kloeden, P.E.2
  • 16
    • 0012150629 scopus 로고    scopus 로고
    • Linear-implicit strong schemes for Itô-Galerkin approximation of stochastic PDEs
    • Kloeden, P.E., Shott, S.: Linear-implicit strong schemes for Itô-Galerkin approximation of stochastic PDEs. J. Appl. Math. Stoch. Anal. 14(1), 47-53 (2001).
    • (2001) J. Appl. Math. Stoch. Anal. , vol.14 , Issue.1 , pp. 47-53
    • Kloeden, P.E.1    Shott, S.2
  • 17
    • 7444266847 scopus 로고    scopus 로고
    • A numerical scheme for stochastic PDEs with Gevrey regularity
    • Lord, G.J., Rougemont, J.: A numerical scheme for stochastic PDEs with Gevrey regularity. IMA J. Numer. Anal. 54(4), 587-604 (2004).
    • (2004) IMA J. Numer. Anal. , vol.54 , Issue.4 , pp. 587-604
    • Lord, G.J.1    Rougemont, J.2
  • 18
    • 42649137906 scopus 로고    scopus 로고
    • Post processing for stochastic parabolic partial differential equations
    • Lord, G.J., Shardlow, T.: Post processing for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 45(2), 870-889 (2007).
    • (2007) SIAM J. Numer. Anal. , vol.45 , Issue.2 , pp. 870-889
    • Lord, G.J.1    Shardlow, T.2
  • 19
    • 35348938145 scopus 로고    scopus 로고
    • Approximation schemes for stochastic differential equations in a Hilbert space
    • Mishura, Y.S., Shevchenko, G.M.: Approximation schemes for stochastic differential equations in a Hilbert space. Theory Probab. Appl. 51(3), 442-458 (2007).
    • (2007) Theory Probab. Appl. , vol.51 , Issue.3 , pp. 442-458
    • Mishura, Y.S.1    Shevchenko, G.M.2
  • 20
    • 56549110155 scopus 로고    scopus 로고
    • Optimal pointwise approximation of a linear stochastic heat equation with additive space-time noise
    • Müller-Gronbach, T., Ritter, K., Wagner, T.: Optimal pointwise approximation of a linear stochastic heat equation with additive space-time noise. In: Monte Carlo and Quasi Monte Carlo Methods 2006, pp. 577-589 (2007).
    • (2007) Monte Carlo and Quasi Monte Carlo Methods 2006 , pp. 577-589
    • Müller-Gronbach, T.1    Ritter, K.2    Wagner, T.3
  • 21
    • 34250182382 scopus 로고    scopus 로고
    • Lower bounds and nonuniform time discretization for approximation of stochastic heat equations
    • Müller-Gronbach, T., Ritter, K.: Lower bounds and nonuniform time discretization for approximation of stochastic heat equations. Found. Comput. Math. 7(2), 135-181 (2007).
    • (2007) Found. Comput. Math. , vol.7 , Issue.2 , pp. 135-181
    • Müller-Gronbach, T.1    Ritter, K.2
  • 22
    • 34250880991 scopus 로고    scopus 로고
    • An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise
    • Müller-Gronbach, T., Ritter, K.: An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise. BIT 47(2), 393-418 (2007).
    • (2007) BIT , vol.47 , Issue.2 , pp. 393-418
    • Müller-Gronbach, T.1    Ritter, K.2
  • 23
    • 56549088376 scopus 로고    scopus 로고
    • Optimal pointwise approximation of infinite-dimensional Ornstein-Uhlenbeck processes
    • Müller-Gronbach, T., Ritter, K., Wagner, T.: Optimal pointwise approximation of infinite-dimensional Ornstein-Uhlenbeck processes. Stoch. Dyn. 8(3), 519-541 (2008).
    • (2008) Stoch. Dyn. , vol.8 , Issue.3 , pp. 519-541
    • Müller-Gronbach, T.1    Ritter, K.2    Wagner, T.3
  • 24
    • 15444363340 scopus 로고    scopus 로고
    • Numerical approximation for a white noise driven SPDE with locally bounded drift
    • Pettersson, R., Signahl, M.: Numerical approximation for a white noise driven SPDE with locally bounded drift. Potential Anal. 22(4), 375-393 (2005).
    • (2005) Potential Anal. , vol.22 , Issue.4 , pp. 375-393
    • Pettersson, R.1    Signahl, M.2
  • 28
    • 0032676044 scopus 로고    scopus 로고
    • Numerical methods for stochastic parabolic PDEs
    • Shardlow, T.: Numerical methods for stochastic parabolic PDEs. Numer. Funct. Anal. Optim. 20(1-2), 121-145 (1999).
    • (1999) Numer. Funct. Anal. Optim. , vol.20 , Issue.1-2 , pp. 121-145
    • Shardlow, T.1
  • 30
    • 33747184742 scopus 로고    scopus 로고
    • Galerkin finite element methods for stochastic parabolic partial differential equations
    • Yan, Y.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43(4), 1363-1384 (2005).
    • (2005) SIAM J. Numer. Anal. , vol.43 , Issue.4 , pp. 1363-1384
    • Yan, Y.1
  • 31
    • 0034395433 scopus 로고    scopus 로고
    • 1 by a finite-difference method
    • 1 by a finite-difference method. Math. Comput. 69(230), 653-666 (1999).
    • (1999) Math. Comput. , vol.69 , Issue.230 , pp. 653-666
    • Yoo, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.