-
2
-
-
0036020751
-
Remarks on the existence and approximation for semilinear stochastic differential equations in Hilbert spaces
-
Y. EL BOUKFAOUI AND M. ERRAOUI, Remarks on the existence and approximation for semilinear stochastic differential equations in Hilbert spaces, Stochastic Anal. Appl., 20 (2002), pp. 495-518.
-
(2002)
Stochastic Anal. Appl
, vol.20
, pp. 495-518
-
-
EL BOUKFAOUI, Y.1
ERRAOUI, M.2
-
3
-
-
0007508207
-
The maximum rate of convergence of discrete approximations for stochastic differential equations
-
Springer, Berlin
-
J. M. C. CLARK AND R. J. CAMERON, The maximum rate of convergence of discrete approximations for stochastic differential equations, in Stochastic Differential Systems (Proc. IFIP-WG7/1 Working Conf., Vilnius, 1978), Lectures Notes in Control and Inform. Sci. 25, Springer, Berlin, 1980, pp. 162-171.
-
(1980)
Stochastic Differential Systems (Proc. IFIP-WG7/1 Working Conf., Vilnius, 1978), Lectures Notes in Control and Inform. Sci
, vol.25
, pp. 162-171
-
-
CLARK, J.M.C.1
CAMERON, R.J.2
-
4
-
-
35349007846
-
-
YU. L. DALETSKIǏ AND S. V. FOMIN, Measures and Differential Equations in Infinite-Dimensional Spaces, Kluwer, Dordrecht, 1991.
-
YU. L. DALETSKIǏ AND S. V. FOMIN, Measures and Differential Equations in Infinite-Dimensional Spaces, Kluwer, Dordrecht, 1991.
-
-
-
-
5
-
-
0038620976
-
Numerical approximation of some linear stochastic partial differential equations driven by special additive noises
-
Q. DU AND T. ZHANG, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises, SIAM J. Numer. Anal., 40 (2002), pp. 1421-1445.
-
(2002)
SIAM J. Numer. Anal
, vol.40
, pp. 1421-1445
-
-
DU, Q.1
ZHANG, T.2
-
7
-
-
12944266405
-
On the rate of convergence of splitting-up approximations for SPDEs
-
Birkhäuser, Basel
-
I. GYÖNGY AND N. KRYLOV, On the rate of convergence of splitting-up approximations for SPDEs, in Stochastic Inequalities and Applications, Birkhäuser, Basel, 2003, pp. 301-321.
-
(2003)
Stochastic Inequalities and Applications
, pp. 301-321
-
-
GYÖNGY, I.1
KRYLOV, N.2
-
8
-
-
18144433566
-
On the splitting-up method and stochastic partial differential equations
-
I. GYÖNGY AND N. KRYLOV, On the splitting-up method and stochastic partial differential equations, Ann. Probab., 31 (2003), pp. 564-591.
-
(2003)
Ann. Probab
, vol.31
, pp. 564-591
-
-
GYÖNGY, I.1
KRYLOV, N.2
-
9
-
-
17144406851
-
On discretization schemes for stochastic evolution equations
-
I. GYÖNGY AND A. MILLET, On discretization schemes for stochastic evolution equations, Potential Anal., 23 (2005), pp. 99-134.
-
(2005)
Potential Anal
, vol.23
, pp. 99-134
-
-
GYÖNGY, I.1
MILLET, A.2
-
10
-
-
0037107474
-
Numerical analysis of semilinear stochastic evolution equations in Banach spaces
-
E. HAUSENBLAS, Numerical analysis of semilinear stochastic evolution equations in Banach spaces, J. Comput. Appl. Math., 147 (2002), pp. 485-516.
-
(2002)
J. Comput. Appl. Math
, vol.147
, pp. 485-516
-
-
HAUSENBLAS, E.1
-
11
-
-
0037209607
-
Approximation for semilinear stochastic evolution equations
-
E. HAUSENBLAS, Approximation for semilinear stochastic evolution equations, Potential Anal., 18 (2003), pp. 141-186.
-
(2003)
Potential Anal
, vol.18
, pp. 141-186
-
-
HAUSENBLAS, E.1
-
12
-
-
35349008365
-
On convergence of approximations of Itô-Volterra equations
-
A. KOLODII, On convergence of approximations of Itô-Volterra equations, Progr. Systems Control Theory, 23 (1997), pp. 157-165.
-
(1997)
Progr. Systems Control Theory
, vol.23
, pp. 157-165
-
-
KOLODII, A.1
-
15
-
-
0003074014
-
Continuous Markov processes and stochastic equations
-
G. MARUYAMA, Continuous Markov processes and stochastic equations, Rend. Circ. Mat. Palermo, 4 (1955), pp. 48-90.
-
(1955)
Rend. Circ. Mat. Palermo
, vol.4
, pp. 48-90
-
-
MARUYAMA, G.1
-
16
-
-
0038673499
-
Approximation and support theorem for a wave equation in two space dimensions
-
A. MILLET AND M. SANZ-SOLÉ, Approximation and support theorem for a wave equation in two space dimensions, Bernoulli, 6 (2000), pp. 887-915.
-
(2000)
Bernoulli
, vol.6
, pp. 887-915
-
-
MILLET, A.1
SANZ-SOLÉ, M.2
-
17
-
-
0000532550
-
Approximate integration of stochastic differential equations
-
G. N. MIL'SHTEIN, Approximate integration of stochastic differential equations, Theory Probab. Appl., 19 (1974), pp. 557-562.
-
(1974)
Theory Probab. Appl
, vol.19
, pp. 557-562
-
-
MIL'SHTEIN, G.N.1
-
19
-
-
15444363340
-
Numerical approximation for a white noise driven SPDE with locally bounded drift
-
R. PETTERSSON AND M. SIGNAHL, Numerical approximation for a white noise driven SPDE with locally bounded drift, Potential Anal., 22 (2005), pp. 375-393.
-
(2005)
Potential Anal
, vol.22
, pp. 375-393
-
-
PETTERSSON, R.1
SIGNAHL, M.2
-
21
-
-
84902142926
-
A Brief Introduction to Numerical Analysis of (O)SDEs without Tears
-
Report No. 1670, IMA, University of Minnesota, Minneapolis
-
H. SCHURZ, A Brief Introduction to Numerical Analysis of (O)SDEs without Tears, Report No. 1670, IMA, University of Minnesota, Minneapolis, 1999.
-
(1999)
-
-
SCHURZ, H.1
-
22
-
-
4043178349
-
Weak convergence of a numerical method for a stochastic heat equation
-
T. SHARDLOW, Weak convergence of a numerical method for a stochastic heat equation, BIT, 43 (2003), pp. 179-193.
-
(2003)
BIT
, vol.43
, pp. 179-193
-
-
SHARDLOW, T.1
-
23
-
-
85009737798
-
Rate of convergence of discrete approximations of solutions to stochastic differential equations in a Hilbert space
-
G. SHEVCHENKO, Rate of convergence of discrete approximations of solutions to stochastic differential equations in a Hilbert space, Theory Probab. Math. Statist., 69 (2004), pp. 187-199.
-
(2004)
Theory Probab. Math. Statist
, vol.69
, pp. 187-199
-
-
SHEVCHENKO, G.1
-
25
-
-
18244398863
-
-
Ph.D. Thesis, Chalmers University of Technology and Göteborg University, Göteborg, Sweden
-
Y. YAN, Error Analysis and Smoothing Properties of Discretized Deterministic and Stochastic Parabolic Problem, Ph.D. Thesis, Chalmers University of Technology and Göteborg University, Göteborg, Sweden, 2003.
-
(2003)
Error Analysis and Smoothing Properties of Discretized Deterministic and Stochastic Parabolic Problem
-
-
YAN, Y.1
|