메뉴 건너뛰기




Volumn 43, Issue 4, 2005, Pages 1363-1384

Galerkin finite element methods for stochastic parabolic partial differential equations

Author keywords

Additive noise; Finite element method; Stochastic parabolic partial differential equations

Indexed keywords

ERROR ANALYSIS; FINITE ELEMENT METHOD; NUMERICAL METHODS; OPTIMAL SYSTEMS; PROBLEM SOLVING; STOCHASTIC CONTROL SYSTEMS;

EID: 33747184742     PISSN: 00361429     EISSN: None     Source Type: Journal    
DOI: 10.1137/040605278     Document Type: Article
Times cited : (222)

References (31)
  • 1
    • 0037606706 scopus 로고    scopus 로고
    • Finite element and difference approximation of some linear stochastic partial differential equations
    • E. J. ALLEN, S. J. NOVOSEL, AND Z. ZHANG, Finite element and difference approximation of some linear stochastic partial differential equations, Stochastics Stochastics Rep., 64 (1998), pp. 117-142.
    • (1998) Stochastics Stochastics Rep. , vol.64 , pp. 117-142
    • Allen, E.J.1    Novosel, S.J.2    Zhang, Z.3
  • 2
    • 0002236253 scopus 로고    scopus 로고
    • Convergence rates for finite element approximations of stochastic partial differential equations
    • F. E. BENTH AND J. GJERDE, Convergence rates for finite element approximations of stochastic partial differential equations, Stochastics Stochastics Rep., 63 (1998), pp. 313-326.
    • (1998) Stochastics Stochastics Rep. , vol.63 , pp. 313-326
    • Benth, F.E.1    Gjerde, J.2
  • 3
    • 0036556593 scopus 로고    scopus 로고
    • Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions
    • K. CHRYSAFINOS AND L. S. HOU, Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions, SIAM J. Numer. Anal., 40 (2002), pp. 282-306.
    • (2002) SIAM J. Numer. Anal. , vol.40 , pp. 282-306
    • Chrysafinos, K.1    Hou, L.S.2
  • 4
    • 33746054475 scopus 로고
    • Ito's lemma in infinite dimensions
    • R. F. CURTAIN AND P. L. FALB, Ito's lemma in infinite dimensions, J. Math. Anal. Appl., 31 (1970), pp. 434-448.
    • (1970) J. Math. Anal. Appl. , vol.31 , pp. 434-448
    • Curtain, R.F.1    Falb, P.L.2
  • 5
    • 0007090390 scopus 로고
    • Stochastic differential equations in Hilbert space
    • R. F. CURTAIN AND P. L. FALB, Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), pp. 412-430.
    • (1971) J. Differential Equations , vol.10 , pp. 412-430
    • Curtain, R.F.1    Falb, P.L.2
  • 6
    • 0038620954 scopus 로고
    • Some results on linear stochastic evolution equations in Hilbert spaces by the semigroups method
    • G. DA PRATO, Some results on linear stochastic evolution equations in Hilbert spaces by the semigroups method, Stochastic Anal. Appl., 1 (1983), pp. 57-88.
    • (1983) Stochastic Anal. Appl. , vol.1 , pp. 57-88
    • Da Prato, G.1
  • 9
    • 0035605884 scopus 로고    scopus 로고
    • Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations
    • A. M. DAVIE AND J. G. GAINES, Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations, Math. Comp., 70 (2001), pp. 121-134.
    • (2001) Math. Comp. , vol.70 , pp. 121-134
    • Davie, A.M.1    Gaines, J.G.2
  • 10
    • 49649130338 scopus 로고
    • Stochastic evolution equations
    • D. A. DAWSON, Stochastic evolution equations, Math. Biosci., 15 (1972), pp. 287-316.
    • (1972) Math. Biosci. , vol.15 , pp. 287-316
    • Dawson, D.A.1
  • 11
    • 0038620976 scopus 로고    scopus 로고
    • Numerical approximation of some linear stochastic partial differential equations driven by special additive noises
    • Q. Du AND T. ZHANG, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises, SIAM J. Numer. Anal., 40 (2002), pp. 1421-1445.
    • (2002) SIAM J. Numer. Anal. , vol.40 , pp. 1421-1445
    • Du, Q.1    Zhang, T.2
  • 12
    • 0001232993 scopus 로고
    • Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem
    • F. GOZZI, Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem, Comm. Partial Differential Equations, 20 (1995), pp. 775-826.
    • (1995) Comm. Partial Differential Equations , vol.20 , pp. 775-826
    • Gozzi, F.1
  • 13
    • 0003027298 scopus 로고    scopus 로고
    • Time-discretised Galerkin approximations of parabolic stochastic PDEs
    • W. GRECKSCH AND P. E. KLOEDEN, Time-discretised Galerkin approximations of parabolic stochastic PDEs, Bull. Austral. Math. Soc., 54 (1996), pp. 79-85.
    • (1996) Bull. Austral. Math. Soc. , vol.54 , pp. 79-85
    • Grecksch, W.1    Kloeden, P.E.2
  • 14
    • 0041725493 scopus 로고    scopus 로고
    • Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise
    • I. GYÖNGY, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I, Potential Anal., 9 (1998), pp. 1-25.
    • (1998) I, Potential Anal. , vol.9 , pp. 1-25
    • Gyöngy, I.1
  • 15
    • 0042078403 scopus 로고    scopus 로고
    • Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise
    • I. GYÖNGY, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II, Potential Anal., 11 (1999), pp. 1-37.
    • (1999) II, Potential Anal. , vol.11 , pp. 1-37
    • Gyöngy, I.1
  • 16
    • 0042732714 scopus 로고    scopus 로고
    • Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise
    • I. GYÖNGY AND D. NUALART, Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise, Potential Anal., 7 (1997), pp. 725-757.
    • (1997) Potential Anal. , vol.7 , pp. 725-757
    • Gyöngy, I.1    Nualart, D.2
  • 17
    • 0037107474 scopus 로고    scopus 로고
    • Numerical analysis of semilinear stochastic evolution equations in Banach spaces
    • E. HAUSENBLAS, Numerical analysis of semilinear stochastic evolution equations in Banach spaces, J. Comput. Appl. Math., 147 (2002), pp. 485-516.
    • (2002) J. Comput. Appl. Math. , vol.147 , pp. 485-516
    • Hausenblas, E.1
  • 18
    • 0037209607 scopus 로고    scopus 로고
    • Approximation for semilinear stochastic evolution equation
    • E. HAUSENBLAS, Approximation for semilinear stochastic evolution equation, Potential Anal., 18 (2003), pp. 141-186.
    • (2003) Potential Anal. , vol.18 , pp. 141-186
    • Hausenblas, E.1
  • 19
    • 0012150629 scopus 로고    scopus 로고
    • Linear-implicit strong schemes for Itô-galerkin approximations of stochastic PDEs
    • P. E. KLOEDEN AND S. SHOTT, Linear-implicit strong schemes for Itô-Galerkin approximations of stochastic PDEs, J. Appl. Math. Stochastic Anal., 14 (2001), pp. 47-53.
    • (2001) J. Appl. Math. Stochastic Anal. , vol.14 , pp. 47-53
    • Kloeden, P.E.1    Shott, S.2
  • 20
    • 7444266847 scopus 로고    scopus 로고
    • A numerical scheme for stochastic PDEs with Gevrey regularity
    • G. J. LORD AND J. ROUGEMONT, A numerical scheme for stochastic PDEs with Gevrey regularity, IMA J. Numer. Anal., 24 (2004), pp. 587-604.
    • (2004) IMA J. Numer. Anal. , vol.24 , pp. 587-604
    • Lord, G.J.1    Rougemont, J.2
  • 21
    • 33747175750 scopus 로고    scopus 로고
    • Non-uniform time discretization and lower bounds for approximation of stochastic heat equations
    • to appear
    • T. MÜLLER-GRONBACH AND K. RITTER, Non-uniform time discretization and lower bounds for approximation of stochastic heat equations, Found. Comput. Math., (2005), to appear.
    • (2005) Found. Comput. Math.
    • Müller-Gronbach, T.1    Ritter, K.2
  • 23
    • 0031574567 scopus 로고    scopus 로고
    • Stochastic evolution equations with a spatially homogeneous Wiener process
    • S. PESZAT AND J. ZABCZYK, Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Process. Appl., 72 (1997), pp. 187-204.
    • (1997) Stochastic Process. Appl. , vol.72 , pp. 187-204
    • Peszat, S.1    Zabczyk, J.2
  • 24
    • 0035565493 scopus 로고    scopus 로고
    • On the discretization in time of parabolic stochastic partial differential equations
    • J. PRINTEMS, On the discretization in time of parabolic stochastic partial differential equations, M2AN Math. Model. Numer. Anal., 35 (2001), pp. 1055-1078.
    • (2001) M2AN Math. Model. Numer. Anal. , vol.35 , pp. 1055-1078
    • Printems, J.1
  • 25
    • 0032676044 scopus 로고    scopus 로고
    • Numerical methods for stochastic parabolic PDEs
    • T. SHARDLOW, Numerical methods for stochastic parabolic PDEs, Numer. Funct. Anal. Optim., 20 (1999), pp. 121-145.
    • (1999) Numer. Funct. Anal. Optim. , vol.20 , pp. 121-145
    • Shardlow, T.1
  • 26
    • 0001695481 scopus 로고    scopus 로고
    • Solving Wick-stochastic boundary value problems using a finite element method
    • T. G. THETING, Solving Wick-stochastic boundary value problems using a finite element method, Stochastics Stochastics Rep., 70 (2000), pp. 241-270.
    • (2000) Stochastics Stochastics Rep. , vol.70 , pp. 241-270
    • Theting, T.G.1
  • 27
    • 33947618919 scopus 로고    scopus 로고
    • Solving parabolic Wick-stochastic boundary value problems using a finite element method
    • T. G. THETING, Solving parabolic Wick-stochastic boundary value problems using a finite element method, Stochastics Stochastics Rep., 75 (2003), pp. 49-77.
    • (2003) Stochastics Stochastics Rep. , vol.75 , pp. 49-77
    • Theting, T.G.1
  • 29
    • 0000659593 scopus 로고
    • An introduction to stochastic partial differential equations
    • École d'été de probabilités de Saint-Flour. XIV-1984, Springer-Verlag, Berlin
    • J. B. WALSH, An introduction to stochastic partial differential equations, in École d'été de probabilités de Saint-Flour. XIV-1984, Lecture Notes in Math. 1180, Springer-Verlag, Berlin, 1986, pp. 265-439.
    • (1986) Lecture Notes in Math. , vol.1180 , pp. 265-439
    • Walsh, J.B.1
  • 30
    • 18244393447 scopus 로고    scopus 로고
    • Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise
    • Y. YAN, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise, BIT, 44 (2004), pp. 829-847.
    • (2004) BIT , vol.44 , pp. 829-847
    • Yan, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.