메뉴 건너뛰기




Volumn 3, Issue 3, 2009, Pages 190-202

Statistical approaches to genome-wide biological networks

Author keywords

Bayesian networks; Boolean networks; Flux balance analysis; Petri nets; State space approach

Indexed keywords


EID: 70350339696     PISSN: 19760280     EISSN: 20927843     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1)

References (61)
  • 1
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology: A brief overview
    • Kitano, H. Systems biology: a brief overview. Science 295, 1662-1664(2002).
    • (2002) Science , vol.295 , pp. 1662-1664
    • Kitano, H.1
  • 2
    • 4544268996 scopus 로고    scopus 로고
    • Computational approach to systems biology: From fraction to integration and beyond
    • Dhar, P.K., Zhu, H. & Mishra, S.K. Computational approach to systems biology: from fraction to integration and beyond. IEEE Trans. Nanobiosci. 3, 144-152(2004).
    • (2004) IEEE Trans. Nanobiosci , vol.3 , pp. 144-152
    • Dhar, P.K.1    Zhu, H.2    Mishra, S.K.3
  • 3
    • 5044227742 scopus 로고    scopus 로고
    • The evolution of molecular biology into systems biology. Nat
    • Westerhoff, H.V. & Palsson, B.O. The evolution of molecular biology into systems biology. Nat. Biotechnol. 22, 1249-1252(2004).
    • (2004) Biotechnol , vol.22 , pp. 1249-1252
    • Westerhoff, H.V.1    Palsson, B.O.2
  • 4
    • 55749087379 scopus 로고    scopus 로고
    • FunNet: An integrative tool for exploring transcriptional interactions
    • Prifti, E., Zucker, J.-D., Clement, K. & Henegar, C. FunNet: an integrative tool for exploring transcriptional interactions. Bioinformatics 24, 2636-2638(2008).
    • (2008) Bioinformatics , vol.24 , pp. 2636-2638
    • Prifti, E.1    Zucker, J.-D.2    Clement, K.3    Henegar, C.4
  • 5
    • 33746674977 scopus 로고    scopus 로고
    • Exploration of biological network centralities with CentiBiN
    • Junker, B.H., Koschützki, D. & Schreiber, F. Exploration of biological network centralities with CentiBiN. BMC Bioinformatics 7, 219(2006).
    • (2006) BMC Bioinformatics , vol.7 , pp. 219
    • Junker, B.H.1    Koschützki, D.2    Schreiber, F.3
  • 6
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • Shen-Orr, S.S., Milo, R, Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64-68(2002).
    • (2002) Nat. Genet , vol.31 , pp. 64-68
    • Shen-Orr, S.S.1    Milo, R.2    Mangan, S.3    Alon, U.4
  • 7
    • 0037174670 scopus 로고    scopus 로고
    • Network motifs: Simple building blocks of complex networks
    • Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824-827(2002).
    • (2002) Science , vol.298 , pp. 824-827
    • Milo, R.1
  • 8
    • 0142027814 scopus 로고    scopus 로고
    • Structure and function of the feed-forward loop network motif
    • Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. 100, 11980-11985(2003).
    • (2003) Proc. Natl. Acad. Sci , vol.100 , pp. 11980-11985
    • Mangan, S.1    Alon, U.2
  • 9
    • 0037676107 scopus 로고    scopus 로고
    • Motifs, modules and games in bacteria
    • Wolf, D.M. & Arkin, A.P. Motifs, modules and games in bacteria. Curr. Opin. Microbiol. 6, 125-134(2003).
    • (2003) Curr. Opin. Microbiol , vol.6 , pp. 125-134
    • Wolf, D.M.1    Arkin, A.P.2
  • 10
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: Understanding the cell's functional organization
    • Barabasi, A.L. & Oltvai, Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101-113(2004).
    • (2004) Nat. Rev. Genet , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 11
    • 33749514099 scopus 로고    scopus 로고
    • Genomic analysis of the hierarchical structure of regulatory networks
    • Yu, H. & Gerstein, M. Genomic analysis of the hierarchical structure of regulatory networks. Proc. Natl. Acad. Sci. 103, 14724-14731(2006).
    • (2006) Proc. Natl. Acad. Sci , vol.103 , pp. 14724-14731
    • Yu, H.1    Gerstein, M.2
  • 12
    • 46849106965 scopus 로고    scopus 로고
    • Functional organization of Escherichia coli transcriptional regulatory network
    • Martínez-Antonio, A., Janga, S.C. & Thieffry, D. Functional organization of Escherichia coli transcriptional regulatory network. J. Mol. Biol. 381, 238-247(2008).
    • (2008) J. Mol. Biol. , vol.381 , pp. 238-247
    • Martínez-Antonio, A.1    Janga, S.C.2    Thieffry, D.3
  • 13
    • 27944493925 scopus 로고    scopus 로고
    • Scale-free networks in cell biology
    • Albert, R. Scale-free networks in cell biology. J. Cell Sci. 118, 4947-4957(2005).
    • (2005) J. Cell Sci , vol.118 , pp. 4947-4957
    • Albert, R.1
  • 14
    • 33847650979 scopus 로고    scopus 로고
    • Robustness and evolvability in genetic regulatory networks
    • Aldana, M., Balleza, F., Kauffman, S. & Resendiz, O. Robustness and evolvability in genetic regulatory networks. J. Theor. Biol. 245, 433-448(2007).
    • (2007) J. Theor. Biol , vol.245 , pp. 433-448
    • Aldana, M.1    Balleza, F.2    Kauffman, S.3    Resendiz, O.4
  • 15
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: Data integration in dynamic models-A review
    • doi:10.1016/j.biosystems
    • Hecker, M., Lambeck, S., Toepfer, S., van Someren, E. & Guthke, R. Gene regulatory network inference: data integration in dynamic models-A review. BioSystems doi:10.1016/j.biosystems(2009).
    • (2009) BioSystems
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    van Someren, E.4    Guthke, R.5
  • 16
    • 17644427718 scopus 로고    scopus 로고
    • Casual protein-signaling networks derived from multiparameter single-cell data
    • Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D.A. & Nolan, G.P. Casual protein-signaling networks derived from multiparameter single-cell data. Science 308, 523-529(2005).
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 17
  • 18
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • Kauffman, S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437-467(1969).
    • (1969) J. Theor. Biol , vol.22 , pp. 437-467
    • Kauffman, S.A.1
  • 19
    • 34248572623 scopus 로고    scopus 로고
    • Boolean dynamics of genetic regulatory networks inferred from microarray time series data
    • Martin, S., Zhang, Z., Martino, A. & Faulon, J.L. Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics 23, 866-874(2007).
    • (2007) Bioinformatics , vol.23 , pp. 866-874
    • Martin, S.1    Zhang, Z.2    Martino, A.3    Faulon, J.L.4
  • 20
    • 38549107133 scopus 로고    scopus 로고
    • Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
    • Li, P., Perkins, E.J., Gong, P. & Deng, Y. Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks. BMC Bioinformatics 8(suppl. 7), S13(2007).
    • (2007) BMC Bioinformatics , vol.8 , Issue.7 SUPPL
    • Li, P.1    Perkins, E.J.2    Gong, P.3    Deng, Y.4
  • 21
    • 32644431906 scopus 로고    scopus 로고
    • Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks
    • Lähdesmäki, H., Hautaniemi, S., Shmulevich, I. & Yli-Harja, O. Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks. Signal Processing 86, 814-834(2006).
    • (2006) Signal Processing , vol.86 , pp. 814-834
    • Lähdesmäki, H.1    Hautaniemi, S.2    Shmulevich, I.3    Yli-Harja, O.4
  • 22
    • 3042588848 scopus 로고    scopus 로고
    • Growing genetic regulatory networks from seed genes
    • Hashimoto, R.F. et al. Growing genetic regulatory networks from seed genes. Bioinformatics 20, 1241-1247 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 1241-1247
    • Hashimoto, R.F.1
  • 23
    • 16344368806 scopus 로고    scopus 로고
    • Intervention in context-sensitive probabilistic Boolean networks
    • Pal, R., Datta, A., Bittner, M.L. & Dougherty, E.R. Intervention in context-sensitive probabilistic Boolean networks. Bioinformatics 21, 1211-1218(2005).
    • (2005) Bioinformatics , vol.21 , pp. 1211-1218
    • Pal, R.1    Datta, A.2    Bittner, M.L.3    Dougherty, E.R.4
  • 24
    • 30344473639 scopus 로고    scopus 로고
    • Systematic intervention of transcription for identifying network response to disease and cellular phenotypes
    • Li, H. & Zhan, M. Systematic intervention of transcription for identifying network response to disease and cellular phenotypes. Bioinformatics 22, 96-102(2006).
    • (2006) Bioinformatics , vol.22 , pp. 96-102
    • Li, H.1    Zhan, M.2
  • 25
    • 39149105974 scopus 로고    scopus 로고
    • Gene regulatory network modeling: A statespace approach
    • Wu, F.-X. Gene regulatory network modeling: a statespace approach. Int. J. Data Min. and Bioinform. 2, 1-14(2008).
    • (2008) Int. J. Data Min. and Bioinform. , vol.2 , pp. 1-14
    • Wu, F.-X.1
  • 27
    • 41349101972 scopus 로고    scopus 로고
    • Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models
    • Hirose, O. et al. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics 24, 932-942(2008).
    • (2008) Bioinformatics , vol.24 , pp. 932-942
    • Hirose, O.1
  • 28
    • 20844452570 scopus 로고    scopus 로고
    • A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
    • Chen, K.C., Wang, T.Y., Tseng, H.H., Huang, C.Y. & Kao, C.Y. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 21, 2883-2890 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 2883-2890
    • Chen, K.C.1    Wang, T.Y.2    Tseng, H.H.3    Huang, C.Y.4    Kao, C.Y.5
  • 29
    • 34547763812 scopus 로고    scopus 로고
    • A stochastic differential equation model for transcriptional regulatory networks
    • Climescu-Haulica, A. & Quirk, M.D. A stochastic differential equation model for transcriptional regulatory networks. BMC Bioinformatics 8(suppl. 5), S4(2007).
    • (2007) BMC Bioinformatics , vol.8 , Issue.5 SUPPL
    • Climescu-Haulica, A.1    Quirk, M.D.2
  • 30
  • 31
    • 0346245913 scopus 로고    scopus 로고
    • On the structure of protein-protein interactions networks. Biochem
    • Thomas, A., Cannings, R., Monk, N. & Cannings, C. On the structure of protein-protein interactions networks. Biochem. Soc. Trans. 31, 1491-1496 (2003).
    • (2003) Soc. Trans , vol.31 , pp. 1491-1496
    • Thomas, A.1    Cannings, R.2    Monk, N.3    Cannings, C.4
  • 32
    • 14844289956 scopus 로고    scopus 로고
    • How biologically relevant are interaction based modules in protein networks
    • Poyatos, J. & Hurst, L. How biologically relevant are interaction based modules in protein networks. Genome Biol. 5, R93(2004).
    • (2004) Genome Biol , vol.5
    • Poyatos, J.1    Hurst, L.2
  • 33
    • 33746274586 scopus 로고    scopus 로고
    • Capturing cellular machines by systematic screens of protein complexes
    • Gagneur, J., David, L. & Steinmetz, L. Capturing cellular machines by systematic screens of protein complexes. Trends Microbio. 14, 336-339(2006).
    • (2006) Trends Microbio , vol.14 , pp. 336-339
    • Gagneur, J.1    David, L.2    Steinmetz, L.3
  • 34
    • 0142052944 scopus 로고    scopus 로고
    • A Bayesian networks approach for predicting protein-protein interactions from genomic data
    • Jansen, R. et al. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449-453(2003).
    • (2003) Science , vol.302 , pp. 449-453
    • Jansen, R.1
  • 35
    • 0842309161 scopus 로고    scopus 로고
    • Discovering molecular pathways from protein interaction and gene expression data
    • Segal, E., Wang, H. & Koller, D. Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 19(suppl. 1), i264-i271(2003).
    • (2003) Bioinformatics , vol.19 , Issue.1 SUPPL
    • Segal, E.1    Wang, H.2    Koller, D.3
  • 36
    • 38349088496 scopus 로고    scopus 로고
    • Coverage and error models of protein-protein interaction data by directed graph analysis
    • Chiang, T., Scholtens, D., Sarkar, D. & Gentleman, R. Coverage and error models of protein-protein interaction data by directed graph analysis. Genome Biol. 8, R186(2007).
    • (2007) Genome Biol , vol.8
    • Chiang, T.1    Scholtens, D.2    Sarkar, D.3    Gentleman, R.4
  • 37
    • 27544494569 scopus 로고    scopus 로고
    • Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data
    • Nariai, N., Tamada, Y., Imoto, S. & Miyano, S. Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data. Bioinformatics 21(suppl. 2), ii206-ii212(2005).
    • (2005) Bioinformatics , vol.21 , Issue.2 SUPPL
    • Nariai, N.1    Tamada, Y.2    Imoto, S.3    Miyano, S.4
  • 38
    • 33644874819 scopus 로고    scopus 로고
    • From genomics to chemical genomics: New developments in KEGG
    • Kanehisa, M. et al. From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res. 34, 354-357(2006).
    • (2006) Nucleic Acids Res , vol.34 , pp. 354-357
    • Kanehisa, M.1
  • 39
    • 13244268322 scopus 로고    scopus 로고
    • A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases
    • Green, M.L. &Karp, P.D. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5, 76(2004).
    • (2004) BMC Bioinformatics , vol.5 , pp. 76
    • Green, M.L.1    Karp, P.D.2
  • 40
    • 40049107547 scopus 로고    scopus 로고
    • Comparison of reversible-jump Markovchain-Monte-Carlo learning approach with other methods for missing enzyme identification
    • Geng, B. et al. Comparison of reversible-jump Markovchain-Monte-Carlo learning approach with other methods for missing enzyme identification. J. Biomed. Inform. 41, 272-281(2008).
    • (2008) J. Biomed. Inform. , vol.41 , pp. 272-281
    • Geng, B.1
  • 41
    • 9544253891 scopus 로고    scopus 로고
    • Genome-scale models of microbial cells: Evaluating the consequences of constraints
    • Price, N.D., Reed, J.L. & Palsson, B.O. Genome-scale models of microbial cells: Evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886-897 (2004).
    • (2004) Nat. Rev. Microbiol. , vol.2 , pp. 886-897
    • Price, N.D.1    Reed, J.L.2    Palsson, B.O.3
  • 42
    • 0030804853 scopus 로고    scopus 로고
    • Flux analysis of underdetermined metabolic networks: The quest for the missing constraints
    • Bonarius, H.P.J., Schmid, G. & Tramper, J. Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol. 15, 308-314(1997).
    • (1997) Trends Biotechnol , vol.15 , pp. 308-314
    • Bonarius, H.P.J.1    Schmid, G.2    Tramper, J.3
  • 44
    • 33746660425 scopus 로고    scopus 로고
    • Identification of genome-scale metabolic network models using experimentally measured flux profiles
    • Herrgård, M.J., Fong, S.S. & Palsson B. Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS. Comput. Biol. 2, e72(2006).
    • (2006) PLoS. Comput. Biol , vol.e72 , pp. 2
    • Herrgård, M.J.1    Fong, S.S.2    Palsson, B.3
  • 45
    • 58149159905 scopus 로고    scopus 로고
    • Network modeling of signal transduction: Establishing the global view
    • Kestler, H.A., Wawra, C., Kracher, B. & Kühl, M. Network modeling of signal transduction: establishing the global view. BioEssays 30, 1110-1125(2008).
    • (2008) BioEssays , vol.30 , pp. 1110-1125
    • Kestler, H.A.1    Wawra, C.2    Kracher, B.3    Kühl, M.4
  • 46
    • 33749078750 scopus 로고    scopus 로고
    • P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin
    • Yang, L., Lin, C. & Liu, Z.R. P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 127, 139-155(2006).
    • (2006) Cell , vol.127 , pp. 139-155
    • Yang, L.1    Lin, C.2    Liu, Z.R.3
  • 47
    • 33244483999 scopus 로고    scopus 로고
    • Consistent re-modeling of signal pathways and its implementation in the TRANSPATH database
    • Choi, C. et al. Consistent re-modeling of signal pathways and its implementation in the TRANSPATH database. Genome Inform. 15, 244-254(2004).
    • (2004) Genome Inform , vol.15 , pp. 244-254
    • Choi, C.1
  • 49
    • 33845569120 scopus 로고    scopus 로고
    • Petri net based descriptions for systematic understanding of biological pathways
    • Matsuno, H., Li, C. & Miyano, S. Petri net based descriptions for systematic understanding of biological pathways. IEICE Trans Fundam Electron Commun Comput. Sci. E89-A, 3166-3174(2006).
    • (2006) IEICE Trans Fundam Electron Commun Comput. Sci , vol.E89-A , pp. 3166-3174
    • Matsuno, H.1    Li, C.2    Miyano, S.3
  • 50
  • 51
    • 0345170900 scopus 로고    scopus 로고
    • Biopathway representation and simulation on hybrid functional Petri net
    • Matsuno, H. et al. Biopathway representation and simulation on hybrid functional Petri net. In Silico Biology 3, 389-404(2003).
    • (2003) In Silico Biology , vol.3 , pp. 389-404
    • Matsuno, H.1
  • 52
    • 0041627864 scopus 로고    scopus 로고
    • Boundary formation by Notch signaling in Drosophila multicellular systems: Experimental observations and a gene network modeling by genomic object net
    • Matsuno. H. et al. Boundary formation by Notch signaling in Drosophila multicellular systems: experimental observations and a gene network modeling by genomic object net. Pac. Symp. Biocomput. 152-163(2003).
    • (2003) Pac. Symp. Biocomput. , pp. 152-163
    • Matsuno, H.1
  • 53
    • 14544306029 scopus 로고    scopus 로고
    • Using Petri net tools to study properties and dynamics of biological systems
    • Peleg, M.P., Rubin, D. & Altman, R.B. Using Petri net tools to study properties and dynamics of biological systems. J. Am. Med. Inform. Assoc. 12, 181-199 (2005).
    • (2005) J. Am. Med. Inform. Assoc , vol.12 , pp. 181-199
    • Peleg, M.P.1    Rubin, D.2    Altman, R.B.3
  • 54
    • 33845569068 scopus 로고    scopus 로고
    • Computational modeling of biological processes with Petri net-based architecture
    • Y.P. Chen
    • Nagasaki, M., Doi, A., Matsuno, H. & Miyano, S. Computational modeling of biological processes with Petri net-based architecture. In Bioinformatics and Technologies ed. Y.P. Chen. 179-242(2005).
    • (2005) In Bioinformatics and Technologies ed , pp. 179-242
    • Nagasaki, M.1    Doi, A.2    Matsuno, H.3    Miyano, S.4
  • 55
    • 33845595564 scopus 로고    scopus 로고
    • Modeling and simulation with hybrid functional Petri nets of the role of interleukin-6 in human early haematopoiesis
    • Troncale, S., Tahi, F., Campard, D., Vannier, J.P. & Guespin, J. Modeling and simulation with hybrid functional Petri nets of the role of interleukin-6 in human early haematopoiesis. Pac. Symp. Biocomput. 427-438 (2006).
    • (2006) Pac. Symp. Biocomput , pp. 427-438
    • Troncale, S.1    Tahi, F.2    Campard, D.3    Vannier, J.P.4    Guespin, J.5
  • 56
    • 33746061326 scopus 로고    scopus 로고
    • From Petri nets to differential equations-An integrative approach for biochemical network analysis
    • Gilbert, D. & Hiner, M. From Petri nets to differential equations-An integrative approach for biochemical network analysis. Proc. ICATPN. LNCS 4024, 181-200 (2006).
    • (2006) Proc. ICATPN. LNCS , vol.4024 , pp. 181-200
    • Gilbert, D.1    Hiner, M.2
  • 57
    • 18244391495 scopus 로고    scopus 로고
    • A versatile Petri net based architecture for modeling and simulation of complex biological process
    • Nagasaki, M., Doi, A., Matsuno, H. & Miyano, S. A versatile Petri net based architecture for modeling and simulation of complex biological process. Genome Informatics 15, 180-197(2004).
    • (2004) Genome Informatics , vol.15 , pp. 180-197
    • Nagasaki, M.1    Doi, A.2    Matsuno, H.3    Miyano, S.4
  • 59
    • 33947371802 scopus 로고    scopus 로고
    • Cell fate simulation model of gustatory neurons with micro RNAs double-negative feedback loop by hybrid functional Petri net with extension
    • Saito, A., Nagasaki, M., Doi, A., Ueno, K. & Miyano, S. Cell fate simulation model of gustatory neurons with micro RNAs double-negative feedback loop by hybrid functional Petri net with extension. Genome Inform. 17, 100-111(2006).
    • (2006) Genome Inform , vol.17 , pp. 100-111
    • Saito, A.1    Nagasaki, M.2    Doi, A.3    Ueno, K.4    Miyano, S.5
  • 60
    • 33845417184 scopus 로고    scopus 로고
    • Application of Petri net based analysis techniques to signal transduction pathways
    • Sackman, A., Heiner, M. & Koch, I. Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics 7, 482(2006).
    • (2006) BMC Bioinformatics , vol.7 , pp. 482
    • Sackman, A.1    Heiner, M.2    Koch, I.3
  • 61
    • 38849146505 scopus 로고    scopus 로고
    • Understanding biological functions through molecular networks
    • Han, J.-D. Understanding biological functions through molecular networks. Cell Res. 18, 224-237(2008).
    • (2008) Cell Res , vol.18 , pp. 224-237
    • Han, J.-D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.