-
1
-
-
0038374781
-
Existence of minimizing Willmore surface of prescribed genus
-
M. Bauer and E. Kuwert, Existence of minimizing Willmore surface of prescribed genus, Int. Math. Res. Not., 2003, No.10 (2003), pp. 553-576.
-
(2003)
Int. Math. Res. Not.
, vol.10
, Issue.2003
, pp. 553-576
-
-
Bauer, M.1
Kuwert, E.2
-
2
-
-
71149088551
-
Classical solutions to the dirichlet problem for Willmore surfaces of revolution
-
to appear
-
A. Dall'Acqua, K. Deckelnick, and H.-Ch. Grunau, Classical solutions to the Dirichlet problem for Willmore surfaces of revolution, Adv. Calc. Var., to appear.
-
Adv. Calc. Var.
-
-
Dall'Acqua, A.1
Deckelnick, K.2
Grunau, H.-Ch.3
-
3
-
-
33646388390
-
Error analysis of a finite element method for the Willmore flow of graphs
-
K. Deckelnick and G. Dziuk, Error analysis of a finite element method for the Willmore flow of graphs, Interfaces Free Bound., 8 (2006), pp. 21-46.
-
(2006)
Interfaces Free Bound
, vol.8
, pp. 21-46
-
-
Deckelnick, K.1
Dziuk, G.2
-
5
-
-
0036373961
-
n existence and computation
-
G. Dziuk, E. Kuwert, and R. Schatzle, Evolution of elastic curves in Rn: Existence and computation, SIAM J. Math. Anal., 33 (2002), pp. 1228-1245.
-
(2002)
SIAM J. Math. Anal.
, vol.33
, pp. 1228-1245
-
-
Dziuk, G.1
Kuwert, E.2
Schatzle, R.3
-
6
-
-
0000514542
-
-
Orell Füssli, Zürich
-
L. Euler, Opera Omnia, Ser. 1, 24, Orell Füssli, Zürich, 1952.
-
(1952)
Opera Omnia, Ser.
, vol.1
, pp. 24
-
-
Euler, L.1
-
7
-
-
0007469909
-
An introduction to variational inequalities and their applications
-
SIAM, Philadelphia
-
D. KINDERLEHRER and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Classics in Appl. Math. 31, SIAM, Philadelphia, 2000.
-
(2000)
Classics in Appl. Math.
, vol.31
-
-
Kinderlehrer, D.1
Stampacchia, G.2
-
8
-
-
0035289434
-
The Willmore flow with small initial energy
-
E. Kuwert and R. Schätzle, The Willmore flow with small initial energy, J. Differential Geom., 57 (2001), pp. 409-441.
-
(2001)
J. Differential Geom.
, vol.57
, pp. 409-441
-
-
Kuwert, E.1
Schätzle, R.2
-
9
-
-
0038779042
-
Gradient flow for the Willmore functional
-
E. Kuwert and R. Schatzle, Gradient flow for the Willmore functional, Comm. Anal. Geom., 10 (2002), pp. 307-339.
-
(2002)
Comm. Anal. Geom.
, vol.10
, pp. 307-339
-
-
Kuwert, E.1
Schatzle, R.2
-
10
-
-
15744389246
-
Removability of point singularities of Willmore surfaces
-
10] E. Kuwert and R. Schatzle, Removability of point singularities of Willmore surfaces, Ann. of Math. (2), 160 (2004), pp. 315-357.
-
(2004)
Ann. of Math.
, vol.160
, Issue.2
, pp. 315-357
-
-
Kuwert, E.1
Schatzle, R.2
-
11
-
-
33846783056
-
Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions
-
11] Yu. Latushkin, J. Prüss, and R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions, J. Evol. Equ., 6 (2006), pp. 537-576.
-
(2006)
J. Evol. Equ.
, vol.6
, pp. 537-576
-
-
Latushkin, Yu.1
Prüss, J.2
Schnaubelt, R.3
-
12
-
-
0042228997
-
Explicit elastic curves
-
12] A. Linnér, Explicit elastic curves, Ann. Global Anal. Geom., 16 (1998), pp. 445-475.
-
(1998)
Ann. Global Anal. Geom.
, vol.16
, pp. 445-475
-
-
Linnér, A.1
-
13
-
-
78651547991
-
A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the willmore flow
-
U. F. Mayer and G. Simonett, A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow, Interfaces Free Bound., 4 (2002), pp. 89-109.
-
(2002)
Interfaces Free Bound
, vol.4
, pp. 89-109
-
-
Mayer, U.F.1
Simonett, G.2
-
14
-
-
0001851007
-
Boundary value problems for variational integrals involving surface curvatures
-
14] J. C. C. Nitsche, Boundary value problems for variational integrals involving surface curvatures, Quart. Appl. Math., 51 (1993), pp. 363-387.
-
(1993)
Quart. Appl. Math.
, vol.51
, pp. 363-387
-
-
Nitsche, J.C.C.1
-
15
-
-
0003894603
-
-
Ph.D. thesis, University of Tubingen, Tubingen, Germany
-
A. Polden, Curves and Surfaces of Least Total Curvature and Fourth-Order Flows, Ph.D. thesis, University of Tubingen, Tubingen, Germany, 1996.
-
(1996)
Curves and Surfaces of Least Total Curvature and Fourth-Order Flows
-
-
Polden, A.1
-
16
-
-
34547408179
-
-
preprint, University of Tubingen, Tubingen, Germany
-
R. Schatzle, The Willmore Boundary Value Problem, preprint, University of Tubingen, Tubingen, Germany, 2006.
-
(2006)
The Willmore Boundary Value Problem
-
-
Schatzle, R.1
-
17
-
-
0000526405
-
Existence of surfaces minimizing the Willmore functional
-
L. Simon, Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom., 1 (1993), pp. 281-326.
-
(1993)
Comm. Anal. Geom.
, vol.1
, pp. 281-326
-
-
Simon, L.1
-
18
-
-
0011599168
-
The Willmore flow near spheres
-
G. Simonett, The Willmore flow near spheres, Differential Integral Equations, 14 (2001), pp. 1005-1014.
-
(2001)
Differential Integral Equations
, vol.14
, pp. 1005-1014
-
-
Simonett, G.1
-
19
-
-
0004028728
-
Total curvature in riemannian geometry
-
Ellis Horwood Limited, Chichester, Halsted Press, New York
-
T. J. Willmore, Total Curvature in Riemannian Geometry, Ellis Horwood Ser. Math. Appl., Ellis Horwood Limited, Chichester, Halsted Press, New York, 1982.
-
(1982)
Ellis Horwood Ser. Math. Appl.
-
-
Willmore, T.J.1
|