메뉴 건너뛰기




Volumn 40, Issue 5, 2009, Pages 2055-2076

Stability and symmetry in the navier problem for the one-dimensional willmore equation

Author keywords

Morse index; Navier boundary conditions; Stability; Symmetry; Willmore equation

Indexed keywords

ADMISSIBLE FUNCTIONS; BOUNDARY CURVATURE; MORSE INDEX; NAVIER BOUNDARY CONDITIONS; STABILITY PROBLEM; SUBRANGE; SYMMETRIC FUNCTIONS; SYMMETRIC SOLUTION; SYMMETRY; WILLMORE EQUATION;

EID: 70350099504     PISSN: 00361410     EISSN: None     Source Type: Journal    
DOI: 10.1137/07069033X     Document Type: Article
Times cited : (18)

References (19)
  • 1
    • 0038374781 scopus 로고    scopus 로고
    • Existence of minimizing Willmore surface of prescribed genus
    • M. Bauer and E. Kuwert, Existence of minimizing Willmore surface of prescribed genus, Int. Math. Res. Not., 2003, No.10 (2003), pp. 553-576.
    • (2003) Int. Math. Res. Not. , vol.10 , Issue.2003 , pp. 553-576
    • Bauer, M.1    Kuwert, E.2
  • 2
    • 71149088551 scopus 로고    scopus 로고
    • Classical solutions to the dirichlet problem for Willmore surfaces of revolution
    • to appear
    • A. Dall'Acqua, K. Deckelnick, and H.-Ch. Grunau, Classical solutions to the Dirichlet problem for Willmore surfaces of revolution, Adv. Calc. Var., to appear.
    • Adv. Calc. Var.
    • Dall'Acqua, A.1    Deckelnick, K.2    Grunau, H.-Ch.3
  • 3
    • 33646388390 scopus 로고    scopus 로고
    • Error analysis of a finite element method for the Willmore flow of graphs
    • K. Deckelnick and G. Dziuk, Error analysis of a finite element method for the Willmore flow of graphs, Interfaces Free Bound., 8 (2006), pp. 21-46.
    • (2006) Interfaces Free Bound , vol.8 , pp. 21-46
    • Deckelnick, K.1    Dziuk, G.2
  • 4
  • 5
    • 0036373961 scopus 로고    scopus 로고
    • n existence and computation
    • G. Dziuk, E. Kuwert, and R. Schatzle, Evolution of elastic curves in Rn: Existence and computation, SIAM J. Math. Anal., 33 (2002), pp. 1228-1245.
    • (2002) SIAM J. Math. Anal. , vol.33 , pp. 1228-1245
    • Dziuk, G.1    Kuwert, E.2    Schatzle, R.3
  • 6
    • 0000514542 scopus 로고
    • Orell Füssli, Zürich
    • L. Euler, Opera Omnia, Ser. 1, 24, Orell Füssli, Zürich, 1952.
    • (1952) Opera Omnia, Ser. , vol.1 , pp. 24
    • Euler, L.1
  • 7
    • 0007469909 scopus 로고    scopus 로고
    • An introduction to variational inequalities and their applications
    • SIAM, Philadelphia
    • D. KINDERLEHRER and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Classics in Appl. Math. 31, SIAM, Philadelphia, 2000.
    • (2000) Classics in Appl. Math. , vol.31
    • Kinderlehrer, D.1    Stampacchia, G.2
  • 8
    • 0035289434 scopus 로고    scopus 로고
    • The Willmore flow with small initial energy
    • E. Kuwert and R. Schätzle, The Willmore flow with small initial energy, J. Differential Geom., 57 (2001), pp. 409-441.
    • (2001) J. Differential Geom. , vol.57 , pp. 409-441
    • Kuwert, E.1    Schätzle, R.2
  • 9
    • 0038779042 scopus 로고    scopus 로고
    • Gradient flow for the Willmore functional
    • E. Kuwert and R. Schatzle, Gradient flow for the Willmore functional, Comm. Anal. Geom., 10 (2002), pp. 307-339.
    • (2002) Comm. Anal. Geom. , vol.10 , pp. 307-339
    • Kuwert, E.1    Schatzle, R.2
  • 10
    • 15744389246 scopus 로고    scopus 로고
    • Removability of point singularities of Willmore surfaces
    • 10] E. Kuwert and R. Schatzle, Removability of point singularities of Willmore surfaces, Ann. of Math. (2), 160 (2004), pp. 315-357.
    • (2004) Ann. of Math. , vol.160 , Issue.2 , pp. 315-357
    • Kuwert, E.1    Schatzle, R.2
  • 11
    • 33846783056 scopus 로고    scopus 로고
    • Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions
    • 11] Yu. Latushkin, J. Prüss, and R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions, J. Evol. Equ., 6 (2006), pp. 537-576.
    • (2006) J. Evol. Equ. , vol.6 , pp. 537-576
    • Latushkin, Yu.1    Prüss, J.2    Schnaubelt, R.3
  • 12
    • 0042228997 scopus 로고    scopus 로고
    • Explicit elastic curves
    • 12] A. Linnér, Explicit elastic curves, Ann. Global Anal. Geom., 16 (1998), pp. 445-475.
    • (1998) Ann. Global Anal. Geom. , vol.16 , pp. 445-475
    • Linnér, A.1
  • 13
    • 78651547991 scopus 로고    scopus 로고
    • A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the willmore flow
    • U. F. Mayer and G. Simonett, A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow, Interfaces Free Bound., 4 (2002), pp. 89-109.
    • (2002) Interfaces Free Bound , vol.4 , pp. 89-109
    • Mayer, U.F.1    Simonett, G.2
  • 14
    • 0001851007 scopus 로고
    • Boundary value problems for variational integrals involving surface curvatures
    • 14] J. C. C. Nitsche, Boundary value problems for variational integrals involving surface curvatures, Quart. Appl. Math., 51 (1993), pp. 363-387.
    • (1993) Quart. Appl. Math. , vol.51 , pp. 363-387
    • Nitsche, J.C.C.1
  • 17
    • 0000526405 scopus 로고
    • Existence of surfaces minimizing the Willmore functional
    • L. Simon, Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom., 1 (1993), pp. 281-326.
    • (1993) Comm. Anal. Geom. , vol.1 , pp. 281-326
    • Simon, L.1
  • 18
    • 0011599168 scopus 로고    scopus 로고
    • The Willmore flow near spheres
    • G. Simonett, The Willmore flow near spheres, Differential Integral Equations, 14 (2001), pp. 1005-1014.
    • (2001) Differential Integral Equations , vol.14 , pp. 1005-1014
    • Simonett, G.1
  • 19
    • 0004028728 scopus 로고
    • Total curvature in riemannian geometry
    • Ellis Horwood Limited, Chichester, Halsted Press, New York
    • T. J. Willmore, Total Curvature in Riemannian Geometry, Ellis Horwood Ser. Math. Appl., Ellis Horwood Limited, Chichester, Halsted Press, New York, 1982.
    • (1982) Ellis Horwood Ser. Math. Appl.
    • Willmore, T.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.